

OHIO ENVIRONMENTAL PROTECTION AGENCY VOLUNTARY ACTION PROGRAM PHASE II PROPERTY ASSESSMENT

Eddy-Kirby Property, Parcels 4 & 5 170 East 131st Street Cleveland, Cuyahoga County, Ohio

VOLUNTEER: Cuyahoga County Department of Public Works 2079 East 9th Street Cleveland, Ohio 44115

Project #: 2093.10A

PREPARED BY: Partners 31100 Solon Road, Suite G Solon, Ohio 44139 (800) 763-1363 (phone) (518) 734-0132 (fax)

This report has been prepared by Partners for the benefit of our Client in accordance with the approved scope of work. Partners assumes no liability for the unauthorized use of information, conclusions or recommendations included in this report by a third party.

31100 Solon Road, Suite G, Solon, Ohio 44139 www.partnersenv.com phone: (800) 763-1363

1.0 IN	TRODUCTION	1
1.1	Property Description	1
1.2	Previous Investigations	1
2.0	PHASE I PROPERTY ASSESSMENT	5
3.0	STATEMENT OF LIMITATIONS or qualifications	8
4.0	CONCEPTUAL SITE MODEL	9
5.0		a
51	VAP Assessment Methodologies	
51	1 Notification to OUPS and OGPUPS	10
5.1	2 Direct Push Soil Borings	10
5.1	3 Soil Sample Handling, Field Screening, and Selection for Analysis	10
5.1	4 Monitoring Well Construction and Development	11
5.1	.5 Monitoring Well Gauging, Purging and Sampling	11
5.1	.6 Sub-Slab Vapor and Ambient Air Sampling	12
5.1	.7 Soil Gas Implant Sampling	12
5.1	.8 Site Measurements	12
5.1	.9 Analytical Testing	13
5.1	.10 Drummed Waste Disposal	13
~ ~		40
6.0	DATA COLLECTION ACTIVITIES	13
6.1	Data Quality Objectives/Sampling and Sample Analysis Plan	13
0.Z	VAP Phase II Property Assessment Data Collection Activities	13
0.3	Geography, Topography, Geology, and Hydrogeology	14
0.3	2 Begiapel Coolegy and Hydrogoolegy	14
0.3	2 Regional Geology and Hydrogeology	14
0.0	Property Specific Hydrogoology A Property Specific Hydrogoology	14
0.0	5 Property Specific Pochargo	14
0.0	6 Croundwater Lico	14
6.0	Comparison Standards	15
0.4 6 /	1 Obio VAP Applicable Soil Standards	15
6.4	2 Ohio VAP Groundwater Standards	15
6.4	3 Ohio VAP Generic Indoor Air Standards Due to Vapor Intrusion	15
6.4	4 Toxic Substances Control Act (TSCA) PCB Regulations	15
65	Scope & Findings	15
65	1 Results of Soil Analysis	16
6.5	2 Results of Groundwater Analysis	19
6.5	3 Results of Sub-Slab Vapor Analysis	21
6.5	5 Results of Ambient Air Analysis	22
6.6	QA/QC Sampling and Testing	23
_		
7.0	DETERMINATIONS	24
7.1	Groundwater Classification and Response Requirements	24
7.2	Protection of Groundwater Meeting the Unrestricted Potable Use Standard (POGWMUPUS)	24
7.3	Applicable Standard Determination and Exposure Point Concentrations	25
8.0	BACKGROUND DETERMINATIONS	25
9.0	MODELING	25
10.0	URBAN SETTING DESIGNATION	25
11.0	PROPERTY-SPECIFIC RISK ASSESSMENT (PSRA)	26
11.1	COCs Used in Risk Characterization	26
11.2	Exposure Assessment	26
11.	2.1 Current and Proposed Land Use	26
11.	2.2 Identification of Receptor Population	26

11.	2.3 Evaluation of Complete Exposure Pathways	
11.	2.4 Exposure Units (EUs)	
11.	2.5 Exposure Point Concentrations (EPCs)	
11.3	Toxicity Assessment	
11.4	Risk Characterization	
11.	4.1 Carcinogenic Risk	
11.	4.2 Non-Carcinogenic Hazard Quotient	
11.	4.3 Carcinogenic and Non-Carcinogenic Risk Ratio Calculations	
11.5	Results of Risk Calculations	
12.0	REMEDIAL ACTIVITIES PRIOR TO NFA LETTER	
12.1	Environmental Covenant	
12.2	Risk Mitigation Plan	
13.0	COMPLIANCE WITH APPLICABLE STANDARDS	
14.0	BIBLIOGRAPHY	

FIGURES

- Figure 1 Property Location Map
- Figure 2 Property and Surrounding Area Map
- Figure 3 Identified Areas Map
- Figure 4 Sample Location Map
- Figure 4A Sample Location Map HzW Excavation Areas
- Figure 4B Distribution of COC Exceedances in Soil Map
- Figure 4C Distribution of COC Exceedances in Groundwater Map
- Figure 4D Distribution of COC Exceedances in Sub-Slab Soil Vapor & Soil Gas Map
- Figure 5 Conceptual Site Model
- Figure 6 Exceedances in Soil
- Figure 7 Exceedances in Groundwater
- Figure 8 Exceedances in Soil Vapor
- Figure 9 Groundwater Flow Direction Map (Completed by HzW)

TABLES

Summary of Identified Areas and Chemicals of Concern
Summary of Sampling and Analysis per Identified Area
Groundwater Monitoring Well Information
Results of Soil Analysis
Table 4A: Summary of VOC Soil Analysis
Table 4B: Summary of PAH and TPH Soil Analysis
Table4C: Summary of RCRA 8 Metals and PCB Analysis
Results of Groundwater Analysis
Table 5A: Summary of VOCs in Groundwater
Table 5B: Summary of PAHs RCRA 8 Metals and PCBs in Groundwater
Results of Sub-Slab Vapor and Soil Gas Analysis
Table 6A: Summary of VOCs in Sub-Slab Vapor
Table 6B: Summary of VOCs in Soil Gas
Soil Direct Contact Risk for VOCs, PAHs, and Metals
Table 7A: Soil Direct Contact Risk for Residential Land Use
Table 7B: Soil Direct Contact Risk for Commercial/Industrial Land Use
Table 7C: Soil Direct Contact Risk for Construction/Excavation Activities Land Use
Viginia Unified Risk Assessment Model
Soil Vapor Direct Contact Risk for VOCs
Table 9A: Soil Vapor Risk for Residential Land Use
Table 9B: Soil Vapor Risk for Commercial/Industrial Land Use
Applicable Standards and Remedial Activities for Each Exposure Pathway

APPENDICES

- Appendix A Property Detail Information
- Appendix B Previous Reports
- Appendix C Data Quality Objectives and Sampling and Analysis Plan (DQO/SAP)
- Appendix D Soil Boring, Groundwater Monitoring Well, and Soil Gas Implant Logs
- Appendix E Well Development/Purge and Sampling Data Sheets
- Appendix F Laboratory Analytical Reports
- Appendix G USD Map, ODNR Well Logs and Ohio EPA Drinking Water Source Protection Areas
- Appendix H Personnel Profiles

ACRONYMS

BGS	Below Ground Surface
CIDARS	Chemical Information Database and Applicable Regulatory Standards
CL	Certified Laboratory (VAP)
CNS	Covenant Not to Sue
COC	Chemicals of Concern
СР	Ohio VAP Certified Professional
DQO/SAP	Data Quality Objectives and Sampling and Analysis Plan
ECLR	Excess Lifetime Cancer Risk
EPC	Exposure Point Concentration
EU	Exposure Unit
GDCS	Generic Direct Contact Standards
GPM	Gallons Per Minute
н	Hazard Index
HSA	Hollow Stem Augers
IA	Identified Area
IDW	Investigation Derived Waste
IRIS	Integrated Risk Information System
NFA	No Further Action
Ohio EPA	Ohio Environmental Protection Agency
OGPUPS	Oil & Gas Producers Underground Protection Service
OUPS	Ohio Utilities Protection Service
РАН	Polynuclear Aromatic Hydrocarbons
PID	Photoionization Detector
PSRA	Property Specific Risk Assessment
PVC	Polyvinyl Chloride
QA/QC	Quality Assurance/Quality Control
RCRA Metals	Resource Conservation and Recovery Act Metals
SOP	Standard Operating Procedure
ТРН	Total Petroleum Hydrocarbons
UCL95	95% Upper Confidence Limit
UPUS	Unrestricted Potable Use Standard
USD	Urban Setting Designation
USEPA	United States Environmental Protection Agency
VAP	Voluntary Action Program
VOC	Volatile Organic Compounds

1.0 INTRODUCTION

This report presents the methods and findings of the Ohio Environmental Protection Agency (Ohio EPA) Voluntary Action Program (VAP) Phase II Property Assessment (Phase II) for the Eddy-Kirby Property, in the City of Cleveland, Cuyahoga County, Ohio (Property). The Property encompasses two (2) individual tax parcels including 111-20-002 (Parcel 4) and 111-19-010 (Parcel 5). They are currently owned by Acme Realty LLC and PN Holdings LLC, respectively. Parcel 4 consists of approximately 13.42 total acres and is currently developed with one (1) commercial/industrial building in poor condition. Parcel 5 consists of 21.78 acres and is developed with two (2) commercial rental/maintenance vehicle garages. Generally, the Property is bound to the northwest by Kirby Avenue right-of-way; to the north/northeast by Coit Road; to the southwest by a Cleveland Water Pollution facility. The location of the Property is depicted on **Figure 1**. This report was prepared by Partners Environmental Consulting, Inc. (Partners) and was requested and authorized by the Cuyahoga County Department of Public Works (Volunteer).

The Phase II was completed in accordance with the Ohio EPA rules set forth in Ohio Administrative Code (OAC) 3745-300-07 through 3745-300-011. This Phase II was completed to support the issuance of a No Further Action (NFA) Letter by a Certified Professional (CP) in accordance with the VAP and obtaining a Covenant Not to Sue (CNS).

The following Partners' personnel contributed to this assessment:

- Mr. John T. Garvey (CP-118), Director of Brownfield and Remediation Services, served as the CP.
- Ms. Halle A. Miller, Project Manager, served as the Project Manager, conducted Property Specific Risk Assessment (PSRA), and served as a contributing author of this report.
- Mr. Jeremy R. Kendle, Project Manager, conducted field activities, conducted Property Specific Risk Assessment (PSRA), and served as a contributing author of this report.
- Mr. Zachary Graham, Environmental Professional, conducted field activities.

Personnel profiles summarizing the qualifications of these individuals are included in Appendix H.

1.1 Property Description

The Property encompasses approximately 35.2-acres and consists of two (2) parcels identified in Cuyahoga County records as parcel numbers 111-20-002 (Parcel 4) and 111-19-010 (Parcel 5). The parcels are currently zoned General Industry (GI). **Figure 2** shows the Property and surrounding area. Property information and topographic survey with a contour interval of two (2) feet are included in **Appendix A**. A legal description and survey were not completed at this time. The latitude and longitude of the Property corners are as follows:

NW:41.551178, -81.598664 NE: 41.5529, -81.592175 SE: 41.548344, -81.597181 SW: 41.548758, -81.598578

1.2 **Previous Investigations**

In 2023, Partners prepared a VAP Phase I Property Assessment (PA) for the Property, which originally included seven (7) parcels. The report, dated April 21, 2023, was titled *Ohio Environmental Protection Agency Voluntary Action Program Phase I Environmental Site Assessment, Commercial Lot, Eddy-Kirby Seven (7) Parcels, Cleveland, Cuyahoga County, Ohio.* Of the seven (7) parcels included in the Phase I PA report, the Volunteer elected to further investigate only Parcels 4 and 5 at this time. This report is further detailed in **Section 2.0**.

Prior to the 2023 VAP Phase I PA report prepared by Partners, several investigations were completed related to the Property between 1991 and 2017, mainly on Parcel 4. Previous investigations are detailed below, with their full reports, when readily available, included in **Appendix B**:

Parcel 4:

Several consultants assisted with initial Property assessment in the 1990s, including coal pile sampling, UST closures, and Phase I Environmental Site Assessments (ESAs). However, the most extensive and comprehensive prior work for the Property was completed by HzW Environmental Consultants (HzW). HzW conducted widespread investigation of the Parcel 4 portion of the Property from 1999 through 2012, including soil, groundwater, and sub-slab vapor sampling, and laboratory analysis. HzW advanced a total of 87 soil borings and collected a total of 201 soil samples. Soil borings in Identified Areas 1, 1A, and 2 were limited due to access, size and underground utilities. HzW also installed nine (9) sub-slab soil gas points and installed 20 groundwater monitoring wells. Three (3) groundwater wells were already present on-Property, installed by Pioneer Environmental Systems, Inc. (Pioneer) in 1993. A summary of the findings from the VAP Phase II completed by HzW is described below and a map of sample locations is provided on **Figure 4**, with exceedances presented on **Figures 4A** through **4D**.

Soil Analysis:

- IA-1 (10 Abandoned USTs and associated oil pit): Soil detections include VOCs, PAHs, and TPH below the VAP GDCS for commercial/industrial land use and/or construction excavation activities with the exception of TCE at HB-104 (6-8) (2.27 mg/kg) which exceeded the generic (Leach Based Soil Value) LBSV. Compared to current VAP standards <u>no</u> VOCs, PAHs, or TPH detections exceed current VAP standards.
- IA-1A (Milling Machine Area): Nine (9) soil samples had detections of VOCs, PAHs, and TPH all of which were below VAP standards for commercial/industrial land use and construction/excavation activities. TCA, 1,1-DCA, 1,2,3-TMB, cis-1,2-DCE, PCE, and TCE exceeded generic LBSV or site specific LBSV. Compared to current VAP standards TCE concentrations exceed the residential land use category in four (4) boring locations, and two (2) boring locations exceed the commercial/industrial land use category.
- IA-2 (Former Degreaser): VOCs were detected in all eight (8) soil samples collected in IA-2. PAHs were detected in two (2) soil samples, and TPH was detected in five (5) soil samples. Once exceedance of TCE for the commercial/industrial land use category is recorded. Compared to current VAP standards show two (2) samples exceed the residential land use and commercial/industrial land use for TCE.
- IA-3 (Heat Treating and Associated Quench Pits): VOCs were detected four (4) of the seven (7) soil samples collected in IA-3. Two (2) samples were analyzed for metals exhibiting low concentrations. VOC concentrations did not exceed generic or site-specific LBSV. TPH concentrations were analyzed for total recoverable hydrocarbons (TR) and has no regulatory standard. High concentrations (up to 74,900 mg/kg) were evident. Compared to current VAP standards <u>no</u> COCs exceeded current VAP standards.
- IA-4 (Former Tin Plating Area): 25 soil samples were collected from five (5) soil borings in IA-4. Samples analyzed for metals were below the GDCS for commercial/industrial land use and PCBs were not detected. Compared to current VAP standards show arsenic above the GDCS for residential land use in eight (8) soil samples.
- IA-5 (Pickling Area)): Five (5) soil borings were advanced in IA-5 with 20 soil samples collected. Arsenic in one (1) soil sample exceeded the GDCS for commercial/industrial land use. Compared to current VAP standards five (5) soil samples exceeded the current VAP GDCS for residential land use in IA-5.

- IA-6 (Dip Tank Area): Three (3) soil borings were advanced in IA-6 with six (6) soil samples collected. Metals were detected in the soil samples with no concentrations above VAP standards. Compared to current VAP standards <u>no</u> COCs were identified above current VAP standards.
- IA-7 (Solvent Tank): Three (3) soil borings were advanced in IA-7 with five (5) soil samples collected. VOCs were detected in all five (5) soil samples. VOCs were below GDCS for commercial/industrial land use and construction/excavation activities. 1,2,4-TMB and 1,3,5-TMB exceeded the site-specific SPV. TPH concentrations were detected in three (3) samples. TPH was below the VAP GDCS for commercial industrial land use and construction/excavation activities. Compared to current VAP standards <u>no</u> COCs were detected above current VAP standards. The TPH samples were analyzed for hydrocarbon fractions that have no current standard (C6-C7, C6-C12, and C16-C32).
- IA-8 (Outdoor Oil Staining): Three (3) shallow soil samples were collected in IA-8. Concentrations of TCE, PAHs and TPH were detected in the soil samples. No concentrations exceeded VAP GDCS for commercial/industrial land use or construction/excavation activities. Compared to current VAP standards <u>no</u> COCs were identified above current VAP standards. The TPH samples were analyzed for hydrocarbon fractions that have no current standard (TR, C6-C7, C6-C12, and C16-C32).
- IA-9 (Former Coal and Exterior Drum Storage Area): 12 soil borings were advanced in IA-9 with 18 soil samples collected. VOCs, PAHs, and metals exceeded either generic LBSV or site-specific SPV. Compared to current VAP standards show ethylbenzene (4,010 mg/kg), isopropylbenzene (453 mg/kg) and xylenes (20,260 mg/kg) exceed the residential land use and construction/excavation activities GDCS. TCE (16.1 mg/kg) exceeded the VAP GDCS for residential land use. The TPH samples were analyzed for hydrocarbon fractions that have no current standard (C6-C7, C6-C12, and C16-C32).
- IA-10 (Former Incinerator): Three (3) soil borings were advanced in IA-10 with four (4) soil samples collected. VOC concentrations were detected in all four (4) soil samples. VOCs exceeded the generic LBSV or a site-specific SPV. Concentrations were below the VAP GDCS for commercial/industrial land use or construction/excavation activities categories. Concentrations of metals were detected in all four (4) soil samples below VAP GDCS for commercial/industrial land use and construction/excavation activities categories. Compared to current standards TCE (20 mg/kg) exceeds the current VAP GDCS for residential land use, lead (652 mg/kg), chromium (28.5 mg/kg), arsenic (43.4 mg/kg and 24 mg/kg), exceeded the VAP GDCS for residential land use, chromium (366 mg/kg) also exceeded the GDCS commercial/industrial land use category.
- IA-11 (Metal Chip Pit and Conveyor Line): Five (5) soil borings were installed in IA-11 with seven (7) soil samples collected. VOCs, PAHs, TPH, and metals were detected in the soil samples. All concentrations were below VAP GDCS for commercial/industrial land use and construction/excavation activities. Compared to current standards arsenic (maximum of 20.9 mg/kg), cadmium (160 mg/kg), chromium (max of 554 mg/kg), and lead (max of 475 mg/kg) exceed the VAP GDCS for residential land use. Chromium also exceeded the VAP GDCS for commercial/industrial land use and construction/excavation activities category. The TPH samples were analyzed for hydrocarbon fractions that have no current standard (C6-C7, C6-C12, and C16-C32).
- IA-12 (Four [4] Former Aboveground Oil Storage Tanks): Seven (7) soil borings were advanced in IA-12 with eight (8) soil samples collected. VOCs were detected in two (2) samples, PAHs were detected in three (3) samples, and TPH was detected in two (2) samples. No COCs exceeded VAP GDCS for commercial/industrial land use or construction/excavation activities. Compared to current VAP standards benzo(a)pyrene (6.27 mg/kg) exceeded the VAP GDCS for residential land use. The TPH samples were analyzed for hydrocarbon fractions that have no current standard (C6-C7, C6-C12, and C16-C32).

- IA-13 (Former 20,000-gallon Heating Oil UST/Piping Manifold for IA-1 USTs): Three (3) soil borings were advanced in IA-13 with three (3) soil samples collected. No detectable concentrations of VOCs or PAHs were detected in the samples.
- IA-14 (Railroad Spur): Ten (10) soil borings were advanced in IA-14 with 26 soil samples collected. Elevated concentrations of lead and/or arsenic were detected in IA-14. VOC and PAH concentrations were below applicable standards. Compared to current VAP standards no COCs exceed VAP GDCS for residential land use, commercial/industrial land use, or construction/excavation activities. The TPH samples were analyzed for hydrocarbon fractions that have no current standard (C6-C7, C6-C12, and C16-C32).

Groundwater Analysis:

Out of the 24 total HzW groundwater wells sampled, 13 of these showed no exceedances of applicable standards. Five (5) groundwater wells had COC concentrations (HzW-02, HzW-03, HzW-15, HzW-17, and WP-03). Identified Areas affected include IA-1A, IA-2, IA-3, and IA-14. An injection event occurred in IA-2 and IA-3 but had little effect on VOCs prompting soil gas sampling. Compared to current VAP standards, show TCE above USEPA VISL standards at six (6) monitoring wells. Vinyl chloride exceeded the USEPA VISL at two (2) monitoring wells, PCE exceeded the USEPA VISL at two (2) monitoring wells, cis-1,2-dichloroethene exceeded the USEPA VISL at one (1) monitoring well, trans-1,2-dichloroethene exceeded the USEPA VISL at two (2) monitoring wells, 1,1-dichloroethane exceeded the USEPA VISL at two (2) monitoring wells, 1,1-dichloroethane exceeded the USEPA VISL at two (2) monitoring wells.

Soil Gas Analysis:

HzW collected nine (9) soil gas samples beneath the building slab in IA-2 and IA-3. VOCs were detected in high concentrations at the soil gas sampling points. Compared to current VAP standards with an applied attenuation factor of 0.03 exhibit exceedances of trichloroethene (maximum of 4,800,000 ug/m3), vinyl chloride (maximum of 1,200 ug/m3), chloroform (maximum of 2,000 ug/m3), and bromodichloromethane (maximum of 600 ug/m3) above residential land use and commercial/industrial land use. Benzene (maximum of 320 ug/m3), ethylbenzene (maximum of 520 ug/m3), and tetrachloroethene (maximum of 4,600 ug/m3) exceeded the VAP GDCS for residential land use with an applied attenuation factor of 0.03.

Corrective Action:

HzW completed excavation activities at IA-9 and IA-14 in April 2007. The excavation activities evolved into one (1) consolidated soil excavation during which a total of 1,389.6 tons of soil were excavated to a maximum depth of six (6) feet bgs. The excavated soil was stabilized with "Tri-Super Phosphate®" prior to being transported to a licensed disposal facility. Backfill of the IAs was completed with crushed limestone and crushed brick. Sidewall samples collected from 0-2 feet bgs during the excavation activities exhibit elevated arsenic, lead, and chromium exceedances throughout the excavation area. Excavations were terminated due to the CP's determinations, structures, or property boundaries.

The VAP Phase II completed by HzW resulted in a No Further Action (NFA) Letter and is the subject of a Covenant Not to Sue (CNS) from the OHIO EPA VAP through the submission of a NFA Letter (No.09NFA364) in January of 2012. The Volunteer under the CNS was Acme Realty, LLC and Cuyahoga County. The current Volunteer is Cuyahoga County. The CNS and NFA outline the current obligation and requirements under the VAP with respect to the Property, as follows:

- An Environmental Covenant (EC) is in place, which includes a limitation for commercial or industrial land uses and a limitation prohibiting groundwater extraction and uses, except for investigation or remediation.
- A Risk Mitigation Plan (RMP) is in place to protect construction and excavation workers at the Property from exposures of arsenic and VOCs at the Property in subsurface soil and groundwater.

The RMP must be implemented whenever construction or excavation activities occur at or below two (2) feet in depth.

 An Operation and Maintenance Plan (O&M Plan) is in place to manage institutional and engineering controls consisting of pavement engineering controls located south of the building, an enclosure of the former degreaser pit and areas immediately downgradient of the pit with the construction of a cinder block wall from floor to ceiling. This area is not accessible and prevents commercial/industrial workers from entering the area with elevated VOC concentrations.

Parcel 5:

Partners was not provided with information related to any previous investigations specifically conducted on Parcel 5, other than the 2023 VAP Phase I PA. However, two (2) IAs identified during the HzW work described above were noted here:

- Reported 14,000-gallon Heating Oil UST: According to Cleveland Fire Department records, one (1) 14,000-gallon fuel oil UST was located in the northeastern corner of Parcel 5. This UST was presumed to be a buried rail car based on the age of the UST. Prior HzW reports noted this as a down-gradient adjoining IA (IA-17) because their Property limits at the time only included Parcel 4. During this current Phase II Investigation, a ground penetrating radar (GPR) survey was done in the area of the UST. Based on this, it was determined that the UST is still present in the northeastern corner of Parcel 5.
- Apparent USTs Vent Pipes: According to observations during the HzW VAP Phase I PA, vent pipes were noted on Parcel 4 with piping leading to four (4) apparent USTs on the northwestern portion of Parcel 5. No further information was available for these USTs relating to size, contents, condition, or status. Prior HzW reports noted this as a down-gradient adjoining IA (IA-18) because the Property limits at the time only included Parcel 4. During this current Phase II Investigation, evidence of USTs or vent pipes were not observed; however, sampling was conducted in this area.

2.0 PHASE I PROPERTY ASSESSMENT

A VAP Phase I Property Assessment (PA) was prepared by Partners and dated April 21, 2023. This work was completed in accordance with the Ohio EPA VAP as described under OAC 3745-300-06. The Phase I PA consisted of conducting site walkovers, interviews, obtaining and reviewing federal, state, and local environmental databases, reviewing historical and reasonably ascertainable public records for the Property and surrounding sites, and reviewing previous reports.

Parcel 4 was historically (approximately 1925-2001) operated by The National Acme Company. The National Acme Company was the result of the merger of The Acme Screw Machine Company of Hartford, Connecticut, and The National Manufacturing Company, of Cleveland, Ohio. The National Acme Company, headquartered in Cleveland, Ohio, was best known for the manufacture and distribution of screw machine products, and shifted to the production and sale of automated machine tools, foundry equipment, and electrical controls. Activities on the Property included steel cutting, machining, painting, and tempering. Warehousing, repair and storage of parts, vehicle maintenance and refueling, waste storage, and administrative operations also occurred on the Property. The National Acme Company went bankrupt in 2000. This assessment revealed evidence of numerous USTs historically on-site. Ten (10) USTs were abandoned in-place beneath the central portion of the building. A No Further Action Letter was received for these USTs in 1993. A 20,000-gallon heating oil UST was also removed in 1990, but heating oil USTs are not regulated. A portion of the former manufacturing facility has been demolished, leaving approximately 2/3 of the former building in place. Parcel 4 is Accessed via a concrete and asphalt drive on Kirby Avenue and is currently owned by Acme Realty LLC. Parcel 4 (111-20-002)

Parcel 5 was historically operated by Elyria Iron & Steel Company, or by the Steel and Tubes Division of Republic Steel (1950-2011), the Chandler Motor Car Company, and Weatherhead Company Auto

Accessories and Parts Manufacturer (1940s-1982). Structures related to the manufacturing that historically occurred on this parcel have been razed. Currently the parcel consists of 2 corrugated steel out buildings and one (1) slab-on-grade office and retail building. Parcel 5 is accessed via a concrete drive on Kirby Avenue and is currently owned by Pn Holdings, LLC.

Based on the conclusions of the Phase I PA, a total of 21 Identified Areas (IAs) were determined for the Property, as described below. The locations of the IAs are shown on **Figure 3**. The IAs and the associated potential chemicals of concern (COCs) are summarized in **Table 1**. The VAP Phase I PA completed by Partners in 2023 included seven (7) parcels. A total of 57 IAs were identified on all seven (7) parcels combined; however. only two (2) parcels were included in this investigation (Parcels 4 & 5), therefore the IA numbers are not sequential between the parcels.

Parcel 4 IAs:

- 10 Abandoned USTs and associated oil pit (IA-1): Ten (10) USTs were identified as being removed from Parcel 4 from 1992 through 1994. At least three (3) Leaking Underground Storage Tank (LUST) events were reported and three (3) of the LUSTs received No Further Action (NFA) letters. The USTs ranged in capacity from 3,300-gallons to 15,000-gallons. The USTs were used to store mineral spirits, Parafin No. 39, Sulkleer 153 E New and Used, Solvac 1533 New, lubricating oil, No. 2 oil, and Stoddard Solvent. The USTs were in the basement of the central portion of the building. The basement and areas directly surrounding these USTs was not accessible during this investigation.
- Milling Machine Area (IA-1A): The milling machine area included a four (4)-foot pit adjacent to IA-1. The pit provided access to the USTs in the basement and milling machines historically operated at this location. Milling machines use large quantities of cutting oils, lubricants, or possibly solvents to cut or shape metal parts during fabrication. The Milling Machine Area was not accessible during this investigation.
- Former Degreaser Pit (IA-2): The Former Degreaser Pit is a 10' x 10' concrete slab in the building. Interviews conducted with Mr. Eugene Vasu, who served as Plant Engineer from 1991 through 2000 stated that the degreaser used 1,1,1-trichloroethane. The degreaser pit was removed, and the pit was filled with concrete in approximately 1993. Degreasers use chlorinated solvents to remove grease and oil from parts prior to heat treating. The depth of the pit is unknown.
- Heat Treating and Associated Quench Pits (IA-3): Heat treating operations occurred in the northwestern portion of the building in shallow pits. These operations consisted of heating metal parts in furnaces and quenching the parts in vats containing salts or oils. Heat treating typically involves the use of oils or cyanide baths for quenching of hot metal parts. The concrete in the pits exhibited visible cracks and staining during the Phase I ESA completed by HzW in 2009.
- Former Tin Plating Area (IA-4): The Former Tin Plating Area was observed to have been filled with concrete during the Phase I ESA completed by HzW in 2009. The pit was surrounded by an older concrete curb. Disconnected overhead vents were also observed. Observations of the condition of the bottom of the pit was not possible. Plating operations typically involve metals and possible PCBs.
- **Pickling Area (IA-5):** The Pickling Area was depicted on historical fire insurance maps. No evidence of pickling (i.e., pitted floors, staining, etc.) was observed. Disconnected overhead vents were observed along with evidence of former equipment being fastened to the floor. Pickling operations typically include the dipping of steel parts in an acid solution to etch the metal prior to the application of another metal during plating.
- **Dip Tank Area (IA-6):** The former dip tank area or paint dip tank consisted of a small 10 foot by 10-foot structure with a 3-foot by 3-foot steel dip tank. Residue was observed on the tank and floor

around the tank during the previous Phase I ESA investigation conducted by HzW in 2009. The floor below the tank and walls around the tank were covered in a hardened resin material. The tank was removed in approximately 2001. Resins typically contain a solvent that evaporates leaving the hardened resin coating.

- Solvent Tank (IA-7): A solvent tank was depicted on the historical documents but was not
 observed during this investigation. Slight staining and cracking of the concrete under the tank was
 observed during the Phase I ESA completed by HzW in 2009. The contents of the solvent tank are
 unknown.
- **Outdoor Oil Staining (IA-8):** Oil staining was observed on the northeastern wall during site inspections of the Phase I ESA completed by HzW. The staining appeared to originate from inside the building resulting in dead vegetation. Operations on the interior of the building in the area include the heat treating area (IA-3). This area was not accessible during this investigation.
- Former Coal and Exterior Drum Storage Area (IA-9): This area was located southwest of the building. Historical documentation indicates this area was used for coal storage from approximately 1949 through 1978. Aerial photographs after 1978 show a large number of drums stored in the area. Stressed vegetation was observed in the area during the Phase I ESA completed by HzW. This area also overlaps the footprint of a former coal-fired boiler building.
- Former Incinerator (IA-10): The former incinerator is located in the southwestern portion of the building. It is unknown what waste the incinerator was used for, or what fuel was used in the incinerator. The area of the former incinerator is paved with concrete. COCs include VOCs and metals.
- Metal Chip Pit and Conveyor Line (IA-11): Historic operations included a chip conveyor and chip pit were located at a shipping dock in the south-central portion of the building near the former incinerator. The system consisted of a depressed concrete pit into which metal chips were conveyed to be stored until disposal. The former metal chip pit has been filled with concrete. Metal chips stored in this pit may have been saturated with cutting oils or solvents, and the condition of the bottom of the pit is unknown. IA-11 can contain metals, VOCs, and PAHs.
- Four (4) Former Aboveground Oil Storage Tanks (IA-12): The ASTs were located adjacent to the southern side of the building near the former loading docks. Four (4) 5,000-gallon were removed at some point after 1972. The area has been repaved, and subsurface conditions are unknown. Oil storage tanks are associated with PAHs and VOCs.
- Former 20,000-gallon Heating Oil UST/Piping Manifold for IA-1 USTs (IA-13): The 20,000gallon heating oil UST was removed in 1990. Heating oil USTs are not regulated by BUSTR. Residual COCs were detected in soil after removal of the UST. Aboveground piping associated with the 10 USTs (IA-1) originate from this area. The piping was determined to be aboveground. An NFA was never obtained for this UST.
- Railroad Spur (IA-14): A former rail spur ran the length of the building on the southern side prior to curving north across Kirby Avenue. The railroad lines were used to service the loading docks on the south side of the building. The railcars were also used to transport metal chips for recycling.
- General Coverage, Parcel 4: While not considered an IA, some borings were strategically placed for general coverage on Parcel 4, as well as a replacement for IA-1, IA-1A, and IA-8, which were not directly accessible during this investigation.

Parcel 5 IAs:

- **Transformer House 1 (IA-51):** Transformer houses are present on Sanborn Fire Insurance Maps for Parcel 5. Historically transformers used PCB containing oil for cooling purposes.
- **Transformer House 2 (IA-52):** Transformer houses are present on Sanborn Fire Insurance Maps for Parcel 5. Historically transformers used PCB containing oil for cooling purposes.
- Four Reported Tanks (IA-53): According to observations during previous investigation, vent pipes were noted on Parcel 4 with piping leading to four (4) apparent USTs on the northeast portion of Parcel 5. No further information was available for these USTs relating to size, contents, condition, or status. It should be noted that in previous HzW reports, these USTs were listed as IA-18.
- 14,000-gallon Fuel Oil UST (IA-54): Sanborn Fire Insurance Maps and Cleveland Fire Department records indicate a 14,000-gallon fuel oil UST located in the northeastern corner of Parcel 5. This UST is presumed to be a buried rail car based on the age of the UST. During this Phase II Investigation a ground penetrating radar (GPR) survey was done in the area of the UST. It was determined during the GPR survey that the UST is still present in the northeast corner of Parcel 5. It should be noted that in previous HzW reports, this UST was listed as IA-17 adjacent to Parcel 4.
- **Pickling Room (IA-55):** A Pickling Room is depicted on Sanborn Fire Insurance Maps in the north central portions of the manufacturing facility on Parcel 5 from approximately 1950 through 1972. The buildings were demolished in approximately 2005. Pickling operations typically include the dipping of steel parts in an acid solution to etch the metal prior to the application of another metal during plating.
- Machine Shop (IA-56): A machine shop is depicted on Sanborn Fire Insurance Maps in the southwestern portion of the former manufacturing facility on Parcel 5 from approximately 1950 through 1972. Aerial photographs show the machine shop building present on Parcel 5 until approximately 2005. It is unknown what operations occurred in the machine shop. Use of solvents, hydrocarbons, and other materials are presumed likely.
- Automotive Scrap Garage with Eight (8) ASTs (IA-57): During site reconnaissance an outbuilding was observed on the western portion of Parcel 5 that contained signage referring to "do it yourself" automotive scrap and repair activities. The open garage area appears to have been used to drain automotive fluids prior to scrapping of vehicles. The automobiles were placed on raised platforms where fluids were drained. A floor drain was observed in the outbuilding as well as a separate room used for battery storage and charging. Furthermore, a series of eight (8) ASTs were present on the north side of the building. Based on the National Fire protection Association (NFPA) labels on the ASTs, they are presumed to contain the following: four (4) ASTs of gasoline, three (3) ASTs of ethylene glycol (antifreeze), and one (1) AST of unknown contents. However, all eight (8) ASTs were spray painted with the notation "Empty 2/17" at the time of reconnaissance, possibly noting that they were last emptied in February 2017.
- General Coverage, Parcel 5: While not considered an IA, some borings were strategically placed for general coverage on Parcel 5 given the lengthy industrial history of the parcel and surrounding area.

3.0 STATEMENT OF LIMITATIONS OR QUALIFICATIONS

In conducting this assessment, we have relied, in part, on the information presented in the environmental reports prepared by others and have accepted this information as accurate and complete unless we discovered otherwise during our assessment.

4.0 CONCEPTUAL SITE MODEL

A conceptual site model (CSM) has been prepared to illustrate the relationships between contaminants, transport media and receptors in connection with the Property. The CSM has been prepared in accordance with OAC 3745-300-07 (C)(7) and (J) and graphically illustrates relationships between contaminants, transport media and receptors on the Property (**Figure 5**).

The Property has been used industrially from at least 1925 to 2000. Operations have included milling, degreasing, heat treating and quenching, plating, pickling, dip tanks, painting, railroad activities, hazardous material storage, machining, illegal solid waste storage, and auto salvaging. The surrounding area was industrial from the 1900s until today with uses including The Lincoln Electric Company manufacturing facility, smelting, White Motor company, and The Weatherhead Company, and steel container storage. To the south was a lead smelter, battery manufacturer, a Mustard Agent Disposal Area, Cres Cor, a service station, and an aviation parts manufacturer. To the north was a textile company and railroad property.

The subsurface of the Property is characterized by fill materials consisting of silty clay to silty sand with varying amounts of slag, concrete, brick, and gravel encountered across the Property. Fill materials encountered were present from depths of two (2) to nine (9) feet bgs. Groundwater is present at depths ranging from 3.93 to 14.56 feet bgs and groundwater flow is to the northwest toward Lake Erie. Groundwater has been determined to be Class A within an Urban Setting Designation (USD) with no deeper water bearing zone. Trench related groundwater exposures are applicable as water is present at depths shallower than 10 feet.

As part of the NFA, an environmental covenant will be in place which includes a groundwater use restriction, a land use restriction to limit use of the Property to Restricted Residential and Commercial/Industrial Land use, and a limitation on building occupancy requiring a remedy to eliminate potential indoor air vapor intrusion. Therefore, complete exposure pathways include the following:

- Restricted Residential Receptors: Direct contact with soil via ingestion, dermal contact, and inhalation of volatile and particulate emissions withing a point of compliance of 2-feet. Inhalation due to vapor intrusion of volatile emissions to indoor air.
- Commercial/Industrial Receptors: Direct contact with soil via ingestion, dermal contact, and inhalation of volatile and particulate emissions within a point of compliance of 2-feet.
- Construction/Excavation Workers: Direct contact with soil via ingestion, dermal contact, and inhalation of volatile and particulate emissions within a point of compliance of 10-feet. Dermal contact with groundwater and inhalation of volatile emissions during trench excavation activities.

5.0 SAMPLING PROCEDURES

5.1 VAP Assessment Methodologies

The methods described in this section pertain to all VAP sampling activities conducted by Partners in July 2023. Partners sampling activities were conducted in general accordance with protocols outlined in Ohio EPA Technical Guidance Manual for Hydrogeologic Investigations and Groundwater Monitoring, the Ohio EPA document Sample Collection and Evaluation of Vapor Intrusion to Indoor Air for Remedial Response, RCRA and VAP, and with Partners' Field Standard Operating Procedures (FSOPs) located in the Data Quality Objectives Plan & Sampling and Analysis Plan (DQO/SAP) attached in **Appendix C**. This section provides an overview of key aspects of the assessment methodology, but greater details is contained within the referenced documents.

Partners scope of work included:

- Installing and sampling 34 soil borings,
- Completing 11 of the soil borings as groundwater monitoring wells,
- Installing seven (7) and sampling six (6) soil-gas implants (1 round of sampling),
- Installing and sampling six (6) sub-slab vapor samples (1 round of sampling),
- Collecting an ambient air sample at one (1) locations (1 round of sampling), and
- Sampling the 11 groundwater monitoring wells (1 round of sampling).

5.1.1 Notification to OUPS and OGPUPS

The Ohio Utilities Protection Service (OUPS) and the Oil Gas Producers Underground Protection Service (OGPUPS) were notified prior to completing subsurface activities. This notification was made a minimum of 48 hours prior to initiating intrusive activities on the Property. The notification allowed OUPS to contact various utilities to mark the location of their underground utility lines (if any) on the Property. In addition, Partners contracted a private utility locator to clear a radius around each boring location on the Property and conduct GPR surveys in the areas of suspected orphan USTs.

5.1.2 Direct Push Soil Borings

Soil borings were completed via a drill rig utilizing direct-push technology (GeoprobeTM). The soil borings were installed to depths ranging from 4 to 10 feet bgs. The GeoprobeTM drives a two (2) inch outer diameter, stainless steel tube containing a new disposable acetate liner into the subsurface to obtain soil samples. The soil is forced into the liner at continuous four (4) foot intervals and is then retrieved to the surface. Each soil sample was visually observed, logged following the ASTM Visual-Manual Procedure D2488, and sampled by a member of Partners' field staff. Soil boring logs are included in **Appendix D** and boring locations are depicted on **Figure 4**. Select soil borings were over-drilled and completed as groundwater monitoring wells using hollow stem augers (HSA).

Soil borings not completed as wells were properly abandoned at the completion of field activities by filling with the drilling cuttings and filling to grade with hydrated bentonite chips, as necessary. Excess soil and decontamination fluids from washing the sampling equipment between samples were containerized and drummed for proper disposal. Drummed waste disposal is discussed in **Section 5.1.9**.

5.1.3 Soil Sample Handling, Field Screening, and Selection for Analysis

Soil samples were field screened with a photoionization detector (PID) to check for the presence of organic vapors. The PID (RAE Systems MiniRae 3000) was calibrated prior to field activities using a known concentration of a calibration gas standard in accordance with the manufacturers' specifications and FSOP No. 007, "Headspace Screening for Volatile Organic Compounds", located in **Appendix C**. PID readings are presented on the soil boring logs located in **Appendix D**.

Soil samples were divided into two (2) portions. One (1) portion was collected into two (2)-ounce and/or four (4)-ounce, pre-cleaned glass jars with Teflon® lined lids, and the other portion was placed into a re-sealable plastic bag for field screening purposes. Samples collected in the glass jars were labeled and placed into a cooler containing ice, stored at approximately 4°C, and submitted under appropriate chain-of-custody control to Alpha Analytical (VAP Certified Laboratory, CL108).

Soil samples submitted for analyses were selected based upon the potential source of contaminants, visual observations, odors, staining, depth to groundwater, the specific area or depth interval being assessed, and evaluation of the point of compliance.

New disposable gloves were worn and changed between each sample to prevent cross-contamination. The sampling equipment was decontaminated between sampling events with an Alconox detergent rinse.

5.1.4 Monitoring Well Construction and Development

A total of 11 groundwater monitoring wells were installed at depths ranging from approximately 8.17 to 20.89 feet bgs using hollow stem auger (HSA) drilling methods. Groundwater monitoring wells were constructed of two (2)-inch inside diameter (ID) polyvinyl chloride (PVC) 0.010-inch slotted screen (10-foot lengths) and PVC riser of appropriate length. The PVC sections were connected using threaded joints. A filter pack, comprised of clean silica sand, was installed around the PVC screen. The filter pack extended above the well screen approximately two (2) feet. Approximately two (2) feet of granular bentonite well seal was installed above the filter pack and the remainder of the well annulus was filled with bentonite to approximately one (1) foot below ground surface. The wells were completed at the surface with steel, flushmount protective covers set in a concrete pad or with metal stick-up well covers. Well construction diagrams are in **Appendix D** and their locations are depicted on **Figure 4**.

Monitoring wells were developed within 48 hours of completion. Prior to development and at subsequent dates, groundwater levels were measured to the nearest 0.01 ft. using a Solinst product-water interface probe (IP) to check for non-aqueous phase liquids (NAPL) in the water column. The saturated volume in each well was calculated and recorded.

For well development, a Whaler pump was used to extract water from the wells until the discharged water visibly cleared, at least five (5) well volumes had been removed, or the wells were pumped dry. During development, the pump was gently lowered and raised through the screened interval of the water column to develop the entire sand filter pack. The wells were allowed to recover a minimum of 24 to 48 hours prior to purging and sampling. No phase-separated liquids were observed in any of the wells. The well development form is included in **Appendix E**.

5.1.5 Monitoring Well Gauging, Purging and Sampling

Groundwater levels were measured to the nearest 0.01 foot using a product-water IP to check for NAPL at the top and bottom of the water column in the well. Depth to water measurements were recorded in the field notes and are included on the monitoring well construction diagrams. These measurements were used to determine groundwater flow direction. During purging, the water was monitored for temperature, pH, specific conductivity, turbidity, dissolved oxygen (DO), and oxidation-reduction potential (ORP). Well purging and sampling field data sheets are presented in **Appendix E**.

Groundwater sampling was conducted using low flow methods to purge and sample the groundwater monitoring wells. A QED SamplePro portable micropurge bladder pump, QED Micropurge Basics controller with a compressed gas cylinder, and disposable polyethylene bladders/tubing were utilized to obtain groundwater samples using low flow sampling techniques. Based on aquifer characteristics and monitoring well diameter, flow rates of 50-300 milliliters (ml) per minute were utilized. A Horiba U-52 Water Quality Monitoring System with a flow-through cell was used by Partners to monitor water quality.

Depth to groundwater was measured prior to lowering the bladder pump so that the pump intake was placed at the approximate midpoint of the water column or the midpoint of the well screened interval. The bladder pump was lowered slowly into the well. The pump was started at its lowest setting and the pumping rate was slowly increased until discharge was observed at the flow-through cell. The pump speed was adjusted to minimize, or at least stabilize the drawdown of the groundwater in the well. The pump setting, purge rate, cumulative volume purged, and field parameters were recorded at approximate 0.25 to one (1) liter volume intervals during purging. The wells were pumped until a minimum of three (3) well volumes of water were purged, the water quality readings were stable, and/or the purge water had low turbidity readings and appeared clear. Groundwater samples were collected by disconnecting the flow-through cell and pumping groundwater directly into the appropriate laboratory supplied sample containers as described in the following paragraph.

Groundwater samples to be tested for Volatile Organic Compounds (VOCs) were placed in two (2) 40 ml amber glass Volatile Organic Analysis (VOA) vials containing a hydrochloric acid preservative. Samples to be tested for Polynuclear Aromatic Hydrocarbons (PAHs) were placed in three (3) non-preserved 40 ml amber glass VOA vials. Samples to be tested for metals Resource Conservation and Recovery Act (RCRA)

eight [8] Metals were collected in one (1) 500 ml plastic bottle containing nitric acid preservative. Samples to be tested for Polychlorinated Biphenyls (PCBs) were placed in one (1) non-preserved 100 ml amber glass vial. Groundwater samples were labeled and placed into a cooler containing ice, stored at approximately 4°C, and submitted under appropriate chain-of-custody control to Pace Analytical (CL0069) for analysis.

5.1.6 Sub-Slab Vapor and Ambient Air Sampling

A total of six (6) sub-slab vapor points were installed and sampled. The sample locations are depicted on **Figure 4**. Each sub-slab vapor point was installed into the granular base beneath the respective building using Vapor Pins[™] installed through a 5/8-inch diameter hole through the slab and approximately three (3) inches into the underlying base material. Loose cuttings were removed with a vacuum. The lower end of Vapor Pin[™] assembly was placed into the drilled hole. The protective handle was placed over the Vapor Pin[™] to protect the barb fitting and cap, and the Vapor Pin[™] was tapped into place using a hammer. Leak testing was conducted by filling the recessed point with water covering the pin and hose coupling.

Teflon tubing was used to connect the implants to a laboratory, certified clean, six (6) liter SUMMA® canister. Prior to sampling, a low volume (<0.2 liters per minute) vacuum pump was utilized to purge three (3) volumes of air from the implant and tubing. The flow regulator on each SUMMA® canister was used to collect a sample directly from the sampling point. The sub-slab samples, and one (1) duplicate sample were collected over a one (1)-hour time period.

One (1) sample of ambient air (Background) was obtained concurrently from an exterior area of the Property believed to be unimpacted by the concerns being assessed and was obtained in order to evaluate potential background conditions.

The samples were shipped via overnight carrier under chain-of-custody protocol to Alpha Analytical for VOC analysis by USEPA Method 8260 Compendium TO-15.

5.1.7 Soil Gas Implant Sampling

A total of seven (7) soil vapor implants were installed on the Property. Implant construction diagrams are in **Appendix D** and their locations are depicted on **Figure 4**. Each soil vapor implant was installed using a direct-push technology (Geoprobe[™]). The soil borings were installed to depths ranging from two (2) to five (5) feet bgs. The Geoprobe[™] drives a two (2) inch outer diameter, stainless steel tube to a desired depth. A 6-inch stainless-steel mesh vapor implant is installed with 1/8-inch Teflon tubing through the outer rods. Once at depth clean silica sand is placed around the soil vapor implant, and approximately 0.5-1-foot above the implant. The outer rods are removed from the bore hole and hydrated bentonite is added to seal the soil vapor implant from the surface. The Teflon tubing is capped at the surface, and the soil vapor implant is completed at the surface with steel, flush-mount protective covers set in a concrete pad.

Prior to sampling the soil vapor implants, a low volume (<0.2 liters per minute) vacuum pump was utilized to purge three (3) volumes of air from the implant and tubing. Samples were obtained by utilizing laboratory, certified clean, six (6) liter SUMMA® canister. The laboratory certified flow regulator was on each SUMMA® canister was used to collect a sample directly from the sampling point over a period of approximately one (1) hour. Only six (6) soil vapor implants were able to be sampled. One (1), P4-IA01-VI01, was found to be submerged during the purging with the low volume vacuum pump.

The samples were shipped via overnight carrier under chain-of-custody protocol to Pace Analytical for VOC analysis by USEPA Method 8260 Compendium TO-15.

5.1.8 Site Measurements

Surveying services were not included as part of this current investigation due to only two (2) of seven (7) parcels being investigated at this time. Surveying services will be implemented in the event of completing the investigation of the additional five (5) parcels. For the purposes of this report Partners is relying on the previous VAP Phase II completed on Parcel 4 by HzW showing groundwater flow direction. Comparison of

groundwater levels are similar and are not though likely to change. A copy of the groundwater flow map from the HzW Phase II is included in the Appendix as **Figure 9.**

5.1.9 Analytical Testing

Soil, groundwater, sub-slab vapor, ambient air, and soil vapor implant samples were submitted for laboratory analyses as detailed in **Table 2** and summarized below. Soil samples submitted for analyses were selected based upon PID readings, odors, staining, the potential source of contaminants, point of compliance being evaluated, and depth to groundwater. Soil and groundwater samples were submitted for one (1) or more of the following analyses, based on the potential or known COC:

SOIL

- Volatile Organic Compounds (VOCs) by USEPA Method 8260,
- Polynuclear Aromatic Hydrocarbons (PAHs) by USEPA Method 8270,
- RCRA 8 Metals by USEPA Methods 6010/7471,
- Total Petroleum Hydrocarbon (TPH) (C6-C12/C10-C34) by USEPA Method 8015, and
- Polychlorinated Biphenyls (PCBs) by USEPA Method 8082.

GROUNDWATER

- VOCs by the USEPA Method 8260
- PAHs by USEPA Method 8270
- RCRA Metals by USEPA Method 6010/7471, and
- Polychlorinated Biphenyls (PCBs) by USEPA Method 8082.

SUB-SLAB VAPOR AND AMBIENT AIR

VOCs by the USEPA Method 8260, Compendium TO15,

SOIL VAPOR

• VOCs by the USEPA Method 8260, Compendium TO15.

Analytical results are summarized in **Section 6.0**. The laboratory reports, chains-of-custody, and VAP laboratory affidavits are included in **Appendix F**.

5.1.10 Drummed Waste Disposal

Soil cuttings from the borings/monitoring wells and water (decontamination, development, and purge waters) generated during the investigation were placed into 55-gallon drums that were properly labeled and temporarily stored on the Property pending waste characterization activities. The drums will be scheduled for removal and off-site disposal by Lake County Green.

6.0 DATA COLLECTION ACTIVITIES

6.1 Data Quality Objectives/Sampling and Sample Analysis Plan

The DQO/SAP was completed in accordance with OAC 3745-300-07(D) to ensure that sampling and analysis procedures of the VAP Phase II would be adequate for potential use in support of a No Further Action Submittal (NFA) under the VAP. A copy of the DQO/SAP is included in **Appendix C**.

6.2 VAP Phase II Property Assessment Data Collection Activities

The scope of the VAP Phase II assessment was developed to ensure adequate sampling to evaluate the 22 IAs at the Property. The IAs were defined based the VAP Phase I Property Assessment prepared by Partners. Assessment activities completed by Partners associated with the completion of this Phase II were conducted in June 2023.

6.3 Geography, Topography, Geology, and Hydrogeology

6.3.1 Geography and Topography

The Property is shown on the USGS 7.5-Minute Topographic Map of the Cleveland North, Ohio Quadrangle (**Figure 1**). The Property is generally flat with a gentle slope down to the northwest toward Lake Erie located 1,250 feet to the northwest. The surface elevation of the Property is approximately 620 feet above mean sea level (AMSL). A map showing the Property topography with a contour interval of two (2) feet is included in **Appendix A**.

6.3.2 Regional Geology and Hydrogeology

According to the *Surficial Geology of Cleveland North 30 x 60 Minute Quadrangle* map, subsurface material underlying the Property consists of Wisconsinan-age clayey to silty till with a thickness of about 10 feet, underlain by Mississippian aged shale and sandstone bedrock.

The ODNR map titled *Groundwater Resources of Cuyahoga County* indicates that the Property is located in an area in which groundwater can be obtained from the shales of the Cuyahoga Formation which can produce yields of three (3) to 10 gallon per minute (gpm).

Partners reviewed information from the Ohio Department of Natural Resources (ODNR), Division of Soil and Water Resources regarding well logs in a one-half (0.5) mile radius of the Property. The Water Well Log Report On-line Search Tool indicates that there are no records potable water wells located within the search radius. Several groundwater monitoring wells are plotted south of the Property which were installed as part of subsurface investigations in 1992 by EDP Consultants and abandoned test wells installed in 1936. Copies of the well logs are included in **Appendix G**.

6.3.3 Property Specific Geology and Soil Properties

Fill materials consisting of silty clay to sand with varying amounts of slag, concrete, brick, and gravel were encountered across the Property from zero (0) to 10 feet. Native soils encountered below the fill consists of gray to brown silt, sand two (2) to 12 feet bgs, and clay. Weathered shale bedrock was encountered in one (1) boring on Parcel 5 at 18-feet bgs. Boring, well, and soil gas implant logs are included in **Appendix D**.

6.3.4 Property Specific Hydrogeology

The water bearing zone is present at depths ranging from 3.9 to 14.5 feet bgs. Groundwater measurements on Parcel 4 ranged from 3.9 to 7.4 feet bgs, while measurements on Parcel 5 ranged from 10.46 to 14.5 feet bgs. Given that a survey of the well locations has not been included in this scope of work, Property-specific groundwater surface elevations from this investigation were not calculated at this time. However, based on historical groundwater elevation models completed during the HzW VAP Phase II of Parcel 4, the direction of groundwater flow is northwest toward Lake Erie. This aligns with known groundwater resources in the general vicinity of the Property. Measurements from the gauging events are presented in **Table 3**. A copy of the Piezometric Surface Map completed by HzW is included in the Appendix as **Figure 9**.

6.3.5 Property Specific Recharge

According to published documentation, the average annual precipitation in this portion of Cuyahoga County is approximately 36 inches per year (ODNR, 2003). Evaporation and surface water runoff serve to significantly reduce the groundwater recharge rate. Recharge rates are presented in Ohio EPA Technical Guidance Compendium, VA30007.14.014 (Ohio EPA, 2005). The suggested recharge rate for silty and clayey sands typical at the Property is between four (4) to 10 inches per year.

6.3.6 Groundwater Use

Municipal water at and in the vicinity of the Property is provided by the Cleveland Water Department, which obtains its water from Lake Erie. No drinking water source protection areas are located at or within a one-half mile of the Property. The Property is located within the Cleveland City-Wide Urban Setting Designation (USD). The USD covers the City of Cleveland in which it has been established that groundwater is not and will not likely be used as a drinking water source (**Appendix D**).

6.4 Comparison Standards

6.4.1 Ohio VAP Applicable Soil Standards

Analytical results, discussed in **Section 6.5**, were compared to the generic numerical standards, as described in OAC 3745-300-08.

The current and planned land use of the Property is residential. The VAP Generic Direct Contact Soil Standards (GDCS) for the Restricted Residential Land Use Category, Commercial/Industrial Land Use Category and the Construction/Excavation Activities Category (OAC rule 3745-300-08) were used for evaluation of the results of soil analyses. Constituents for which no GDCS have been derived were compared to the Ohio EPA VAP Chemical Information Database and Applicable Regulatory Standards (CIDARS), Supplemental Criteria.

6.4.2 Ohio VAP Groundwater Standards

Results of groundwater analyses were compared to standards for potable use and vapor intrusion. Ohio VAP generic and risk-based Unrestricted Potable Use Standards (UPUS) (OAC rule 3745-300-08). UPUS is not an applicable standard for the Property, but comparison is required for groundwater response requirement and protection determinations under the VAP.

USEPA Vapor Intrusion Screening Levels (VISL) Target Groundwater Concentrations were determined for residential land use with a carcinogenic risk of 1E-5, hazard quotient of 1, an attenuation factor (AF) of 0.001, and a groundwater temperature of 11 degrees Celsius in accordance with the Ohio EPA document Sample Collection and Evaluation of Vapor Intrusion to Indoor Air for Remedial Response, RCRA and VAP.

6.4.3 Ohio VAP Generic Indoor Air Standards Due to Vapor Intrusion

To evaluate sub-slab vapor and soil gas results, an attenuation factor is applied to the Ohio VAP generic indoor air standards due to vapor intrusion, restricted residential land use and commercial/industrial land use category (OAC rule 3745-300-08) to account for the reduction in concentration during vapor migration in the subsurface coupled with the dilution that occurs when the vapors enter a building and mix with indoor air. In accordance with Ohio EPA guidance, an attenuation factor of 0.03 was applied to the Indoor Air Standards.

6.4.4 Toxic Substances Control Act (TSCA) PCB Regulations

PCB analytical results were compared to the USEPA action levels set forth in 40 CFR 761. The comparison standard for wipe samples on non-porous materials is 10 micrograms per 100 cm² (10ug/100cm²) PCBs for a commercial surface for reuse.

6.5 Scope & Findings

This section provides a discussion of the Phase II activities and findings for each parcel and IA and incorporates the results from investigations conducted by Partners and others. A summary of soil, groundwater, sub-slab vapor and soil gas samples obtained in each IA during Partners' investigation is provided in **Table 2**.

Analytical results are presented in **Tables 4 through 6**. Laboratory analytical reports are included in **Appendix F**. Laboratory reporting limits were below applicable standards for constituents in soil and

groundwater except as noted in the QA/QC Summary in **Section 6.6**. Further evaluation was conducted to assess exposure pathways and receptors through the PSRA (**Section 11**).

6.5.1 Results of Soil Analysis

A summary of the results of soil analysis by Identified Area is described below:

- IA-01 (10 Abandoned USTs and associated oil pit): Six (6) soil samples had detections of VOCs, PAHs, and TPH all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities.
- **IA-02 (Former Degreaser):** One (1) soil sample had detections for VOCs and metals all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use and Construction/Excavation Activities.
- IA-03 (Heat Treating and Quench Pits): Two (2) soil samples had detections of VOCs, PAHs, and metals all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use and Construction/Excavation Activities.
- IA-04 (Former Tin Plating Area): One (1) soil sample had detections for VOCs, PAHs, and metals all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities.
- IA-05 (Pickling Area): One soil sample had detections for VOCs, PAHs, and metals all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities.
- IA-06 (Dip Tank Area): One (1) soil sample had detections for VOCs and metals all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities with the exception of arsenic at P4-IA06-SB01 (4-6) (21 mg/kg) above the Residential Land Use Category but is below the Cuyahoga County Background Levels for Metals in Soil.
- **IA-07 (Solvent Tank):** One (1) soil sample had detections for VOCs, PAHs, and metals all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities.
- IA-09 (Former Coal and Drum Storage): One (1) soil sample had detections for VOCs, PAHs and metals all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities.
- IA-10 (Former Incinerator): One (1) soil sample had detections for PAHs and metals all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities with the exception of chromium (58.7 mg/kg) above the Residential Land Use Category and lead (2,530 mg/kg) at P4-IA10-SB01 (2-4) above the Residential Land Use Category, Commercial/Industrial Land Use Category, and Construction/Excavation Activities.
- IA-11 (Metal Chip Pit and Conveyor Line): One (1) soil sample had detections of VOCs, PAHs, and metals all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities.
- IA-12 (Four Former Oil ASTs): One (1) soil sample had detections of VOCs, PAHs, and TPH, all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities.

- IA-14 (Railroad Spur): Two (2) soil samples had detections for VOCs all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities. Three (3) soil samples had detections for PAHs and metals all of which below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities with the exception of benzo(a)pyrene at P4-IA14-SB01 (0-2) (2.86 mg/kg) and P4-IA14-SB02 (2-4) (11.2 mg/kg) was above the Residential Land Use category.
- **Parcel 4 General Coverage:** Two (2) soil borings had detections for VOCs, PAHs, and metals all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities.
- IA-51 (Transformer House 1): Two (2) soil samples had detections for PAHs, TPH, and PCBs all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities with the exception of benzo(a)pyrene at P5-IA51-SB01 (2-4) (5.33 mg/kg) and P5-IA51-SB02 (2-4) (17.3 mg/kg), and dibenz(a,h)anthracene (3.58 mg/kg) at P5-IA51-SB02 (2-4) above the Residential Land Use Category.
- IA-52 (Transformer House 2): Two (2) soil samples had detections for PAHs and TPH all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities.
- IA-53 (Four Reported Tanks): One (1) soil sample had detections for VOCs which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities. Two (2) soil samples had detections for PAHs, TPH, and metals all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Use, and Construction Excavation Activities.
- IA-54 (14,000 Gallon Fuel Oil UST): Two (2) soil samples had detections for VOCs, PAHs, and TPH all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities.
- IA-55 (Pickling Room): One (1) soil sample had detections for VOCs, PAHs, and metals all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities.
- IA-56 (Machine Shop): Two (2) soil samples had detections of VOCs, PAHs, and metals all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities with the exception of benzo(a)pyrene (3.22 mg/kg) at P5-IA56-SB01 (2-4) exceeds the Residential Land Use Category.
- IA-57 (Auto Scrap Garage with Eight ASTs): Two (2) soil samples had detections for VOCs, PAHs, TPH, and metals all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities with the exception of benzo(a)pyrene (2.74 mg/kg) at P5-IA57-MW01 (2-4) and lead (404 mg/kg) at P5-IA57-MW01 (2-4) above the Residential Land Use Category.
- **Parcel 5 General Coverage:** Three (3) soil samples had detections for VOCs, PAHs, and metals all of which were below VAP standards for Restricted Residential Land Use, Commercial/Industrial Land Use, and Construction Excavation Activities.

Additionally, the previous VAP Phase II completed by HzW found the following exceedances in soil when compared to the current VAP standards.

• IA-1A (Milling Machine Area): Nine (9) soil samples had detections of VOCs, PAHs, and TPH all of which were below VAP standards for commercial/industrial land use and construction/excavation

activities. TCA, 1,1-DCA, 1,2,3-TMB, cis-1,2-DCE, PCE, and TCE exceeded generic LBSV or site specific LBSV.

- IA-2 (Former Degreaser): VOCs were detected in all eight (8) soil samples collected in IA-2. PAHs were detected in two (2) soil samples, and TPH was detected in five (5) soil samples. Once exceedance of TCE for the commercial/industrial land use category is recorded. Compared to current VAP standards show two (2) samples exceed the residential land use and commercial/industrial land use for TCE.
- IA-4 (Former Tin Plating Area): 25 soil samples were collected from five (5) soil borings in IA-4. Samples analyzed for metals were below the GDCS for commercial/industrial land use and PCBs were not detected. Compared to current VAP standards show arsenic above the GDCS for residential land use in eight (8) soil samples.
- IA-5 (Pickling Area): Five (5) soil borings were advanced in IA-5 with 20 soil samples collected. Arsenic in one (1) soil sample exceeded the GDCS for commercial/industrial land use. Compared to current VAP standards five (5) soil samples exceeded the current VAP GDCS for residential land use in IA-5.
- IA-9 (Former Coal and Exterior Drum Storage Area): 12 soil borings were advanced in IA-9 with 18 soil samples collected. VOCs, PAHs, and metals exceeded either generic LBSV or site-specific SPV. Compared to current VAP standards show ethylbenzene (4,010 mg/kg), isopropylbenzene (453 mg/kg) and xylenes (20,260 mg/kg) exceed the residential land use and construction/excavation activities GDCS. TCE (16.1 mg/kg) exceeded the VAP GDCS for residential land use. The TPH samples were analyzed for hydrocarbon fractions that have no current standard (C6-C7, C6-C12, and C16-C32).
- IA-10 (Former Incinerator): Three (3) soil borings were advanced in IA-10 with four (4) soil samples collected. VOC concentrations were detected in all four (4) soil samples. VOCs exceeded the generic LBSV or a site-specific SPV. Concentrations were below the VAP GDCS for commercial/industrial land use or construction/excavation activities categories. Concentrations of metals were detected in all four (4) soil samples below VAP GDCS for commercial/industrial land use and construction/excavation activities categories. Compared to current standards TCE (20 mg/kg) exceeds the current VAP GDCS for residential land use, lead (652 mg/kg), chromium (28.5 mg/kg), arsenic (43.4 mg/kg and 24 mg/kg), exceeded the VAP GDCS for residential land use, chromium (366 mg/kg) also exceeded the GDCS commercial/industrial land use category.
- IA-11 (Metal Chip Pit and Conveyor Line): Five (5) soil borings were installed in IA-11 with seven (7) soil samples collected. VOCs, PAHs, TPH, and metals were detected in the soil samples. All concentrations were below VAP GDCS for commercial/industrial land use and construction/excavation activities. Compared to current standards arsenic (maximum of 20.9 mg/kg), cadmium (160 mg/kg), chromium (max of 554 mg/kg), and lead (max of 475 mg/kg) exceed the VAP GDCS for residential land use. Chromium also exceeded the VAP GDCS for commercial/industrial land use and construction/excavation activities category. The TPH samples were analyzed for hydrocarbon fractions that have no current standard (C6-C7, C6-C12, and C16-C32).
- IA-12 (Four [4] Former Aboveground Oil Storage Tanks): Seven (7) soil borings were advanced in IA-12 with eight (8) soil samples collected. VOCs were detected in two (2) samples, PAHs were detected in three (3) samples, and TPH was detected in two (2) samples. No COCs exceeded VAP GDCS for commercial/industrial land use or construction/excavation activities. Compared to current VAP standards benzo(a)pyrene (6.27 mg/kg) exceeded the VAP GDCS for residential land use. The TPH samples were analyzed for hydrocarbon fractions that have no current standard (C6-C7, C6-C12, and C16-C32).

Results of soil analysis are shown in **Tables 4A** through **4C**. The locations of Partners soil exceedances are presented on **Figure 6**, while the locations of HzW soil exceedances are presented in the previous report in **Appendix B**.

6.5.2 Results of Groundwater Analysis

A summary of the results of groundwater analysis by Identified Area is described below:

- IA-01 (10 Abandoned USTs & Associated Oil Pit): Groundwater samples collected had detectable concentrations of VOCs and PAHs all of which were below the US EPA VISL for Residential Land Use and The UPUS VAP standards.
- IA-03 (Heat Treating and Quench Pits): Groundwater samples collected had detectable concentrations of VOCs, PAHs, and metals all below the US EPA VISL for Residential Land Use and the UPUS VAP standards with the exception of vinyl chloride. Vinyl chloride (0.0049 mg/l) was detected above the UPUS and US EPA VISL for Residential Land use in P4-IA03-MW01).
- IA-04 (Former Tin Plating Area): Groundwater samples collected had detectable concentrations
 of VOCs, PAHs, and metals all below the US EPA VISL for Residential Land Use and the UPUS
 VAP standards.
- **IA-07 (Solvent Tank):** Groundwater samples collected had detectable concentrations of PAHs and metals all below the US EPA VISL for Residential Land Use and the UPUS VAP standards.
- IA-11 (Metal Chip Pit and Conveyor Line): Groundwater samples collected had detectable concentrations of VOCs and metals all below the US EPA VISL for Residential Land Use and the UPUS VAP standards with the exception of cis-1,2-dichloroethene (0.15 mg/l) above the VAP UPUS and vinyl chloride (0.00895 mg/l) above the US EPA VISL for Residential Land Use.
- **Parcel 4 General Coverage:** Groundwater samples collected had detectable concentrations of PAHs and metals all below the US EPA VISL for Residential Land Use and The UPUS VAP standards.
- IA-53 (Four Reported Tanks): Groundwater samples collected had detectable concentrations of metals all below the US EPA VISL for Residential Land Use and The UPUS VAP standards.
- IA-54 (14,000 Gallon Fuel Oil UST): Groundwater samples collected had detectable concentrations of VOCs and PAHs all below the US EPA VISL for Residential Land Use and The UPUS VAP standards with the exception of 1-methylnaphthalene above the VAP UPUS.
- **IA-56 (Machine Shop):** Groundwater samples collected had detectable concentrations of PAHs and metals all below the US EPA VISL for Residential Land Use and The UPUS VAP standards.
- IA-57 (Auto Scrap Garage with Eight ASTs): Groundwater samples collected had detectable concentrations of metals all below The US EPA VISL for Residential Land Use and The UPUS VAP standards with the exception of arsenic (0.0104 mg/kg) above the VAP UPUS.
- **Parcel 5 General Coverage:** Groundwater samples collected had detectable concentrations of metals all below the US EPA VISL for Residential Land Use and the UPUS VAP standards.

Additionally, the previous VAP Phase II completed by HzW found the following exceedances in groundwater when compared to the current VAP standards. Access for well installation completed by HzW was limited and some wells are adjacent to or placed in the nearest possible location to the listed Identified Areas:

- IA-01 (10 Abandoned USTs & Associated Oil Pit): Groundwater samples collected had detectable concentrations of VOCs and metals all below the US EPA VISL for Residential Land Use and The UPUS VAP standards with the exception of trichloroethene (0.0134 mg/l) and vinyl chloride (maximum of 0.00857 mg/l) above the US EPA VISL for Residential Land Use and 1,2-dichloroethane (EDC) (0.00542 mg/l) above the VAP UPUS. Lead (0.0405 mg/l) is above the VAP UPUS.
- IA-01A (Milling Machine Area): Groundwater samples collected had detectable concentrations of VOCs and metals all below the US EPA VISL for Residential Land Use and The UPUS VAP standards with the exception of 1,1-dichloroethane (maximum of 0.471 mg/l), 1,1,1-trichloroethane (maximum of 0.521 mg/l), and trichloroethene (maximum of 1.66 mg/l) above the US EPA VISL for Residential Land Use. 1,1-dichloroethene (maximum of 0.0527 mg/l) and cis-1,2-dichloroethene (0.466 mg/l) and lead (0.0477 mg/l) are above the VAP UPUS.
- IA-02 (Former Degreaser): Groundwater samples collected had detectable concentrations of VOCs all below the US EPA VISL for Residential Land Use and The UPUS VAP standards with the exception of trans-1,2-dichloroethene (maximum of 2.5 mg/l), tetrachloroethene (0.837 mg/l), and trichloroethene (maximum of 93 mg/l) above the US EPA VISL for Residential Land Use. Cis-1,2-dichloroethene (maximum of 63 mg/l) and lead (0.134 mg/l) are above the VAP UPUS.
- IA-03 (Heat Treating and Quench Pits): Groundwater samples collected had detections of VOCs and metals all below the US EPA VISL for Residential Land Use and The UPUS VAP standards with the exception of trans-1,2-dichloroethene (maximum of 0.436 mg/l), trichloroethene (maximum of 0.435 mg/l), and total xylenes (maximum of 13 mg/l) above the US EPA VISL for Residential Land Use. Cis-1,2-dichloroethene (maximum of 8.5 mg/l) is above the VAP UPUS.
- IA-05 (Pickling Area): Groundwater samples collected had no detections for VOCs, PAHs, or metals.
- IA-06 (Dip Tank Area): Groundwater samples collected had no detections for VOCs, PAHs, or metals.
- IA-08 (Outdoor Oil Staining) : Groundwater samples collected had detectable concentrations of VOCs and metals all below the US EPA VISL for Residential Land Use and The UPUS VAP standards.
- IA-09 (Former Coal and Drum Storage): Groundwater samples collected had detectable concentrations of VOCs and metals all below the US EPA VISL for Residential Land Use and The UPUS VAP standards with the exception of 1,1,1,2-tetrachloroethane (0.0952 mg/l), trichloroethene (0.0264 mg/l), and vinyl chloride (0.0753 mg/l) above the US EPA VISL for Residential land Use. 1,1-dichloroethane (0.0594 mg/l) and cis-1,2-dichloroethene (0.146 mg/l) are above the VAP UPUS.
- IA-10 (Former Incinerator): Groundwater samples collected had detectable concentrations of metals all below the US EPA VISL for Residential Land Use and The UPUS VAP standards with the exception of barium (52.2 mg/l) and lead (0.0161 mg/l) above the VAP UPUS standards.
- IA-11 (Metal Chip Pit and Conveyor Line): Groundwater samples collected had detectable concentrations of VOCs and metals all below the US EPA VISL for Residential Land Use and The UPUS VAP standards with the exception of vinyl chloride (0.00895 mg/l) above the US EPA VISL for Residential Land Use and cis-1,2-dichloroethene (0.15 mg/l) and lead (0.0502 mg/l) above the VAP UPUS.
- IA-12 (Four former Oil ASTs): Groundwater samples collected had detectable concentrations of metals all below the US EPA VISL for Residential Land Use and The UPUS VAP standards with the exception of lead (maximum of 0.0686 mg/l) above the VAP UPUS standards.

• IA-14 (Railroad Spur): Groundwater samples collected had detectable concentrations of VOCs and metals all below the US EPA VISL for Residential Land Use and The UPUS VAP standards with the exception of 1,1-dichloroethane (0.219 mg/l) above the US EPA VISL for Residential Land Use Category. Cis-1,2-dichloroethene (0.272 mg/l) above the VAP UPUS.

Results of groundwater analysis are shown in **Tables 5A** and **5B**. The locations of Partners groundwater exceedances are presented on **Figure 7**, while the locations of HzW groundwater exceedances are presented in the previous report in **Appendix B**.

6.5.3 Results of Sub-Slab Vapor Analysis

A summary of the results of sub-slab vapor analysis by Identified Area is described below:

- IA-02 (Former Degreaser Pit): Vapor samples collected had detectable concentrations of VOCs all below the VAP Indoor Air Standard for Residential and Commercial/industrial Land Uses with an applied attenuation factor of 0.03 with the exception of trichloroethene (6,640 ug/m3) above the VAP Indoor Air Standard for Commercial/Industrial Land Use.
- IA-03 (Heat Treating and Quench Pits): Vapor samples collected had detectable concentrations of VOCs all below the VAP Indoor Air Standard for Residential and Commercial/industrial Land Uses with an applied attenuation factor of 0.03 with the exception of naphthalene (110 ug/m3) above the VAP Indoor Air Standard for Residential Use with an applied attenuation factor of 0.03.
- IA-04 (Former Tin Plating): Vapor samples collected had detectable concentrations of VOCs all below the VAP Indoor Air Standard for Residential and Commercial/industrial Land Uses with an applied attenuation factor of 0.03 with the exception of naphthalene (451 ug/m3) and trichloroethene (298 ug/m3) above the VAP Indoor Air Standard Commercial/industrial Land Uses with an applied attenuation factor of 0.03.
- **IA-05 (Pickling Area):** Vapor samples collected had detectable concentrations of VOCs all below the VAP Indoor Air Standard for Residential and Commercial/industrial Land Uses with an applied attenuation factor of 0.03.
- **IA-07 (Solvent Tank):** Vapor samples collected had detectable concentrations of VOCs all below the VAP Indoor Air Standard for Residential and Commercial/industrial Land Uses with an applied attenuation factor of 0.03 with the exception of naphthalene (4,480 ug/m3) above the VAP Indoor Air Standard for Commercial/industrial Land Uses with an applied attenuation factor of 0.03.
- IA-57 (Auto Scrap Garage with Eight ASTs): Vapor samples collected had detectable concentrations of VOCs all below the VAP Indoor Air Standard for Residential and Commercial/industrial Land Uses with an applied attenuation factor of 0.03 with the exception of benzene (10,800 ug/m3) and ethylbenzene (8,020 ug/m3) above the VAP Indoor Air Standard for Commercial/Industrial Land Use with an applied attenuation factor of 0.03. N-hexane (86,700 ug/m3), vinyl chloride (10,100 ug/m3), and 1,2,4-trimehtylbenzene (6,180 ug/m3) are above the VAP Indoor Air Standard for Residential land Use with an applied attenuation factor of 0.03.

Additionally, the previous VAP Phase II completed by HzW found the following exceedances in sub-slab vapor when compared to current VAP standards:

• **IA-02 (Former Degreaser Pit):** Vapor samples collected had detectable concentrations of VOCs all below the VAP Indoor Air Standard for Residential and Commercial/industrial Land Uses with an applied attenuation factor of 0.03 with the exception of bromodichloromethane (600 ug/m3), trichloroethene (4,800,000 ug/m3), and chloroform (2,000 ug/m3) above the VAP Indoor Air Standard for Commercial/industrial Land Uses with an applied attenuation factor of 0.03. Benzene

(320 ug/m3) and tetrachloroethene (4,600 ug/m3) were above the VAP Indoor Air Standard for Residential Use with an applied attenuation factor of 0.03.

• IA-03 (Heat Treating and Quench Pits): Vapor samples collected had detectable concentrations of VOCs all below the VAP Indoor Air Standard for Residential and Commercial/industrial Land Uses with an applied attenuation factor of 0.03 with the exception of trichloroethene (4,100 ug/m3) above the VAP Indoor Air Standard for Commercial/industrial Land Uses with an applied attenuation factor of 0.03. Naphthalene (110 ug/m3), benzene (320 ug/m3), and ethylbenzene (520 ug/m3) are the VAP Indoor Air Standard for Residential Use with an applied attenuation factor of 0.03.

Results of sub-slab vapor analysis are shown in **Table 6A**. The locations of Partners sub-slab vapor exceedances are presented on **Figure 8**, while the locations of HzW soil exceedances are presented in the previous report in **Appendix B**.

6.5.4 Results of Soil Vapor Implant Analysis

A summary of the results of soil gas implant analysis by Identified Area is described below:

- IA-06 (Dip Tank Area): Soil gas samples collected had detectable concentrations of VOCs all below the VAP Indoor Air Standard for Residential and Commercial/industrial Land Uses with an applied attenuation factor of 0.03.
- IA-09 (Former Coal & Drum Storage): Soil gas samples collected had detectable concentrations of VOCs all below the VAP Indoor Air Standard for Residential and Commercial/industrial Land Uses with an applied attenuation factor of 0.03 with the exception of tetrachloroethene (13,200 ug/m3) above the VAP Indoor Air Standard for Commercial/industrial Land Uses with an applied attenuation factor of 0.03 and trichloroethene (168 ug/m3) above the VAP Indoor Air Standard for Residential Use with an applied attenuation factor of 0.03.
- IA-53 (Four Reported Tanks): Soil gas samples collected had detectable concentrations of VOCs all below the VAP Indoor Air Standard for Residential and Commercial/industrial Land Uses with an applied attenuation factor of 0.03.
- IA-54 (14,000 Gallon Fuel Oil UST): Soil gas samples collected had detectable concentrations of VOCs all below the VAP Indoor Air Standard for Residential and Commercial/industrial Land Uses with an applied attenuation factor of 0.03.
- IA-55 (Pickling Room): Soil gas samples collected had detectable concentrations of VOCs all below the VAP Indoor Air Standard for Residential and Commercial/industrial Land Uses with an applied attenuation factor of 0.03 with the exception of trichloroethene (111 ug/m3) above the VAP Indoor Air Standard for Residential Use with an applied attenuation factor of 0.03.
- IA-56 (Machine Shop): Soil gas samples collected had detectable concentrations of VOCs all below the VAP Indoor Air Standard for Residential and Commercial/industrial Land Uses with an applied attenuation factor of 0.03.

Results of soil vapor analysis are shown in **Table 6B**. The locations of Partners soil vapor exceedances are presented on **Figure 8**.

6.5.5 Results of Ambient Air Analysis

Results of ambient air analysis showed no concentrations of VOCs above Ohio VAP Generic Indoor Air Standards due to Vapor Intrusion (Residential Land Use or Commercial/Industrial Land Use Categories).

6.6 QA/QC Sampling and Testing

Quality Assurance/Quality Control (QA/QC) samples consisted of duplicate samples, trip blanks, and equipment blanks. The equipment blanks consisted of samples collected by passing organic-free water or deionized water over decontaminated sampling equipment and into the sample container. The following is a summary of the QA/QC samples collected during the Phase II Property Assessment.

- Duplicate Soil Samples: One (1) duplicate soil sample was collected. Duplicate sample was submitted for analysis of VOC, PAHs, metals, and PCBs.
- Duplicate Groundwater Samples: One (1) duplicate sample was submitted for VOC, PAH, metals analysis.
- Duplicate Air Samples: One (1) duplicate sample was submitted for VOC analysis.
- One (1) trip blank was submitted for VOC analysis. Two (2) field blanks were submitted for VOC analysis. One (1) equipment blank was obtained for analysis of VOCs, PAHs, metals, and PCBs.

A review of laboratory narratives and an examination of all flagged compounds and QA/QC blank sample results suggest that laboratory analysis and field procedures were generally consistent and that no significant or identifiable cross-contamination occurred between samples, equipment, or field blanks was detected during Phase II activities. Additionally, laboratory data qualifiers reported indicated that laboratory QA/QC sample deviations were explainable, generally acceptable, and were not expected to adversely affect analytical results. Therefore, the analytical results presented are deemed acceptable for this project.

RAY

7.0 DETERMINATIONS

7.1 Groundwater Classification and Response Requirements

Groundwater Classification:

Groundwater classification was conducted in accordance with OAC 3745-300-10. According to OAC 3745-300-10, there are three (3) classifications for groundwater 1) critical resource, 2) Class A, and 3) Class B.

The following criteria for critical resource groundwater are not met at the Property; unconsolidated saturated zones capable of yielding an average rate greater than 100 gpm are not present; federally protected consolidated sole source aquifers are not present; and areas that are within a wellhead protection area endorsed or under review by Ohio EPA for a public water system are not present. A copy of the Ohio EPA Drinking Water Source Protection Areas Map depicting the Property and surrounding area is included in **Appendix G**.

One (1) groundwater zone has been identified at the Property. The water bearing zone is comprised of unconsolidated fill materials and predominantly sand soils with varying amounts of silt and clay and has been determined to be *Class A within a USD* as another ground water zone is not present beneath the Property or surrounding area that is a potential source of potable water (OAC 3745-300-10(B)(2)). The Property and surrounding area are underlain by the Devonian Ohio Shale. The Ohio Shale is described as being impermeable and does not provide sufficient volumes of groundwater for domestic use. The Ohio Shale is documented to be generally greater than 400 feet thick and extends laterally beneath all of Cuyahoga County (Banks & Feldman, 1970). The Ohio Shale is a groundwater confining layer and is not considered an aquifer in this region of Ohio as little to no water is available for use from these shales (Stout, Ver Steeg, and Lamb, 1943).

Groundwater Response Requirements:

- Implement institutional controls or engineering controls that reliably prevent human exposure on the Property to groundwater with concentrations of COCs in excess of UPUS (OAC 3745-300-10(E)(2).
- UPUS exceedances exist in the water bearing zone. A Groundwater Use Restriction through an Environmental Covenant will be filed with the NFA. The environmental covenant is detailed further in **Section 12.0**.

7.2 Protection of Groundwater Meeting the Unrestricted Potable Use Standard (POGWMUPUS)

Results of groundwater analyses conducted as part of this Phase II and described in **Section 6.0**, found that groundwater in the water bearing zone does not meet UPUS. A demonstration that groundwater in this water bearing zone is protected against COCs leaching from soil and causing the UPUS to be exceeded is not necessary.

No deeper water bearing zone is present beneath or within one (1) mile of the Property. The Ohio Shale is described as being impermeable and does not provide sufficient volumes of groundwater for domestic use. The Ohio Shale is documented to be generally greater than 400 feet thick and extends laterally beneath all of Cuyahoga County (Banks & Feldman, 1970). The Ohio Shale is a groundwater confining layer and is not considered an aquifer in this region of Ohio as little to no water is available for use from these shales (Stout, Ver Steeg, and Lamb, 1943). Jagucki and Dorner (2001) concluded in their study that the Ohio Shale is poorly permeable, with yields too low to meet domestic supply demands. The hydraulic conductivity of shale in general ranges from 1×10^{-7} to 1×10^{-11} cm/second, with the higher end of the range being a result of fractures (Heath, 1994). It is reasonable to conclude that the hydraulic conductivity of the Ohio Shale is not significantly more than 1×10^{-7} cm/second. Based upon the documented hydrogeology, extent and thickness of the Ohio Shale, a lower ground water bearing zone is not believed to exist within the deeper portion of the shale bedrock beneath the Property.

7.3 Applicable Standard Determination and Exposure Point Concentrations

Based on the exposure pathway assessment and COCs present, the applicable standards and points of compliance for soil at the Property are as follows:

- The GDCS for the Restricted Residential Land Use Category for a 2-foot point of compliance,
- The GDCS for the Commercial/Industrial Land Use Category for a 2-foot point of compliance, and
- The GDCS for the Construction/Excavation Activities Category for a 10-foot point of compliance.

Response requirements for groundwater classified as *Class A with a USD* necessitates compliance with standards for potential exposures not associated with groundwater ingestion. A Groundwater Use Restriction will be applied to the Property to ensure that groundwater shall not be extracted or used for any purpose, potable or otherwise, except in conjunction with groundwater investigation, remedial activities, or construction or excavation activities or maintenance of subsurface utilities as necessary. Based on this, the location of the Property in a USD, and the planned use, the applicable standards for groundwater are as follows:

Groundwater to indoor air for the commercial/industrial worker: USEPA Vapor Intrusion Screening Level (VISL).

The applicable standards for vapor intrusion at the Property are as follows:

• Ohio VAP Generic Indoor Air Standards due to Vapor Intrusion (Commercial/ Industrial Land Use Category) with an applied attenuation factor of 0.03 for sub-slab vapor.

8.0 BACKGROUND DETERMINATIONS

No background determinations were completed as part of this Phase II. However, The Ohio EPA Division of Environmental Response and Revitilization Background metal Soil Concentrations for Cuyahoga County were used for arsenic comparisons as no on-site unimipacted soil was evident and Cuyahoga County used similar soils for nearby locations when generating the background level.

9.0 MODELING

No fate and transport modeling was completed as part of this Phase II.

10.0 URBAN SETTING DESIGNATION

The Property is located within the Cleveland City-Wide Urban Setting Designation (USD). The USD covers the City of Cleveland in which it has been established that groundwater is not and will not likely be used as a drinking water source. No request for a Property-specific USD determination was submitted.

11.0 PROPERTY-SPECIFIC RISK ASSESSMENT (PSRA)

The purpose of this PSRA is to determine if chemical compounds detected in soil, groundwater and subslab vapor are likely to pose an unacceptable human health risk. The PSRA provides estimates of the carcinogenic and non-carcinogenic risks posed to receptor populations on and off the Property, based upon applicable standards and the acceptable risk goals established by the Ohio VAP. The PSRA is comprised of four (4) parts, outlined in OAC 3745-300-09: the selection of chemicals of concern, the exposure assessment, the toxicity assessment, and the characterization of risk.

There are no ecological receptors (e.g., surface water, wetlands, or sediments) on or abutting the Property and no subsurface conduits that may transport any contamination to important ecological receptors. Therefore, it was not necessary to evaluate COC exposures for complete pathways to ecological receptor populations.

11.1 COCs Used in Risk Characterization

In order to provide a conservative evaluation of the risk to human health at the Property, detected COCs in soil, groundwater, and vapor were evaluated.

For lead, the GDCS takes into account other factors and assumptions in addition to the carcinogenic or non-carcinogenic risks so that using cumulative risk adjustment is not appropriate (OAC 3745-300-08). The TPH standards are based upon soil saturation and made up of numerous petroleum factions such that using cumulative risk adjustment is not appropriate (OAC 3745-300-08).

11.2 Exposure Assessment

The objective of the exposure assessment is to determine the reasonably anticipated magnitude, frequency, duration, and routes of exposure on the Property and on areas adjacent to the Property. Both the Property specific data and intended land uses are considered (**Table 10**).

11.2.1 Current and Proposed Land Use

The current land use of the Property is vacant commercial/industrial land. Information from the City of Cleveland indicates that the Property and surrounding area are zoned General Industry. The Property is bordered to the north, south, and east by commercial and industrial facilities. The proposed land use of the Property, and purpose of this Phase II Assessment is to evaluate the Property's potential as a site for The Cuyahoga County Jail and Justice Center with Restricted Residential Land Use and Commercial/Industrial Land Use.

11.2.2 Identification of Receptor Population

On-Property receptor populations based on the current and planned use of the Property include:

- On-Property Restricted Residential Residents and Commercial/Industrial Workers
- On-Property Construction/Excavation Workers.

Additionally, a trespasser or visitor may also be considered a potential receptor. Compliance for on-Property residential and construction/excavation worker with the applicable standards is considered adequately protective of the potential trespasser or visitor whose exposure would be more limited than the on-Property workers and residents.

Potential off-Property receptor populations based on the surrounding land use include:

• Off-Property Commercial/Industrial Workers

11.2.3 Evaluation of Complete Exposure Pathways

A determination of the complete exposure pathways was conducted based on the identified receptor populations and distribution of COCs in environmental media. Soil exposure risks are presented in **Tables 7A** through **7C**, groundwater exposure risks are presented in **Tables 8A** and **8B**, and soil vapor exposure risks are presented in **Tables 9A** and **9B**. The following complete pathways were evaluated.

On-Property Residential and Workers

• Direct contact with soil via ingestion, dermal contact with soil and inhalation of volatile and particulate emissions.

The evaluation of direct contact exposure for restricted residential and commercial/industrial workers is quantified using data collected from soils within a 2-foot point of compliance. With the Environmental Covenant in place Inhalation due to vapor intrusion of volatile emissions to indoor air is dependent on future land use and building plans.

On-Property Construction/Excavation Workers

• Direct contact with soil within the upper 10 feet via ingestion, dermal contact, and inhalation of volatile and particulate emissions.

The evaluation for direct contact exposure to soil for the construction/excavation worker is quantified using data within a point of compliance of 10 feet bgs. Depths to groundwater ranges from 3.93 to 14.56 feet bgs. Therefore, potential construction and excavation worker exposure to groundwater is reasonably anticipated during trenching activities.

Off-Property Receptors

• Off-Property Commercial/Industrial Workers - Vapor intrusion from groundwater to indoor air.

11.2.4 Exposure Units (EUs)

An exposure unit is a location within which an exposed receptor may reasonably be assumed to move at random and where contact with an environmental medium (e.g., soil) is equally likely at all sub-locations. Based on the distribution of COCs and the current and reasonable anticipated development of the Property, one (1) Property wide exposure unit (EU) was established for the evaluation of residential land use, commercial/ industrial land use, and construction/excavation activities.

11.2.5 Exposure Point Concentrations (EPCs)

The EPCs for evaluating the risk posed to the potential receptors are described below:

On-Property Residential and Commercial/Industrial Worker

The EPC used for the evaluation of direct contact exposure for Residential and Commercial/Industrial workers was quantified using maximum concentrations from soils within a 2-foot point of compliance.

On-Property Construction/Excavation Worker

The EPC for direct contact exposures to soil for the construction/excavation worker had the maximum detected values within the point of compliance of 10 feet.

11.3 Toxicity Assessment

The toxicity criteria were determined in accordance OAC 3745-300-09. The toxicity values are consistent with the toxicity criteria in the most up to date values presented in the USEPA Integrated Risk Information System (IRIS) and those published in the Ohio EPA Chemical Information Database and Applicable Regulatory Standards (CIDARS).

11.4 Risk Characterization

Risk characterization integrates the exposure point concentrations of the COCs, exposure routes, and toxicity values in order to estimate the carcinogenic and non-carcinogenic health risks for the identified receptor populations.

11.4.1 Carcinogenic Risk

Carcinogenic risk is expressed in scientific notation as a unitless probability. Risk due to exposure to multiple chemicals is assumed to be additive without consideration to target organs or systems. As presented in OAC 3745-300-09, the cumulative carcinogenic risk, attributable to the chemicals of concern on, underlying or emanating from a property, must not exceed an excess upper bound lifetime cancer risk to an individual of one (1) in 100,000 (1E-05).

11.4.2 Non-Carcinogenic Hazard Quotient

Non-carcinogenic hazards are expressed as hazard quotients. For a conservative determination the hazard quotients for individual chemicals are assumed to be additive without consideration to target organs or systems. The sum of the hazard quotients is called a hazard index (HI). A HI above one (1) indicates that the potential for adverse effects cannot be ruled out. The cumulative non-carcinogenic hazard, attributable to the chemicals of concern on, underlying or emanating from a property, must not exceed one (1).

11.4.3 Carcinogenic and Non-Carcinogenic Risk Ratio Calculations

The carcinogenic and non-carcinogenic incremental risk ratios were calculated for exposure scenarios associated with each receptor.

The risk ratio calculations were conducted by dividing the EPC of each COC by its associated standard for either single chemical carcinogens or single chemical non-carcinogens, in accordance with the procedures described in OAC 3745-300-08 and OAC 3745-300-09. The resultant cancer ratios were summed as an expression of estimated cancer risk and the resultant non-cancer ratios were summed as an expression of estimated hazard index. The cancer risk ratio is converted into an excess upper bound lifetime cancer risk (ELCR) by multiplying the risk ratio value by (1E-05). Therefore, a cancer risk ratio of one (1) represents a risk of (1E-05).

11.5 Results of Risk Calculations

The locations of Partners soil, groundwater, and soil vapor exceedances are presented on **Figure 6, 7,** and **8**, respectively. The locations of HzW soil, groundwater, and soil vapor exceedances are presented on **Figures 4A** through **4D**.

Restricted Residential Land Use:

The cumulative excess lifetime cancer risk (ELCR) and non-carcinogenic hazard index (HI) for restricted residential land use is presented below.

The complete exposure pathway includes direct contact with soil with a point of compliance of 2-feet for Restricted Residential land use. Incremental risk for direct contact with soil is presented on **Table 7A**, while risk for sub-slab soil vapor and soil gas is presented on **Table 9A**.

Restricted Residential Land Use		
Exposure Pathway	HI	ELCR
Direct Contact with Soil	3.9	1.3E-04

The hazard index and Cumulative lifetime cancer risk do not meet the applicable standards.

Commercial and Industrial Land Use:

The cumulative excess lifetime cancer risk (ELCR) and non-carcinogenic hazard index (HI) for a commercial worker is presented below.

With the Environmental Covenant in place, the complete exposure pathway includes direct contact with soil with a point of compliance of 2-feet. Incremental risk for direct contact with soil is presented on **Table 7B**, while risk for sub-slab soil vapor and soil gas is presented on **Table 9B**..

Commercial and Industrial Land Use			
Exposure Pathway	ні	ELCR	
Direct Contact with Soil	0.73	1.3E-05	

Cumulative risk for direct contact with soil for a commercial/industrial worker does not meet applicable standards.

Construction and Excavation Activities

The cumulative excess lifetime cancer risk and non-carcinogenic hazard index for a construction/ excavation worker is presented below. Exposure includes direct contact with soil with a point of compliance of 10 feet. Incremental risk for direct contact with soil is presented on **Table 7C**.

Construction and Excavation Activities			
Exposure Pathways	HI	ELCR	
Direct Contact with Soil	34.18	1.1E-05	

The hazard index and cumulative risk for direct contact with soil does not meet applicable standards.

The cumulative excess lifetime cancer risk and non-carcinogenic hazard index for construction/excavation activities is presented below. Exposure includes inhalation of soil vapor and vapor intrusion via groundwater in trenches with a point of compliance of 10 feet. The locations of exceedances are presented in **Figure 8**.

Construction and Excavation Activities			
Exposure Pathway	HI	ELCR	
Direct Contact with Soil	1.8E-03	2.3E-04	

Cumulative risk for inhalation of soil vapor and vapor intrusion of groundwater in trenches does not meet the applicable standards.

Because the point of compliance for groundwater is less than two (2) feet, or 10 feet which is covered under the trench model, a construction worker quantitative risk assessment was completed using the Virginia Unified Risk Assessment Model (VURAM) developed by the Virginia Department of Environmental Quality (DEQ) and considered to be industry standard. The VURAM is provided as **Table 8**.

12.0 REMEDIAL ACTIVITIES PRIOR TO NFA LETTER

Based on the findings of the Phase II Property Assessment, it was determined that with targeted soil removal remedy and the implementation of the Environmental Covenant, Risk Mitigation Plan (RMP), and Operations and Maintenance Plan (O&M Plan) the Property will meet applicable standards.

12.1 Environmental Covenant

An Environmental Covenant will be implemented to meet applicable standards, as detailed below:

- A land use restriction will be implemented to limit use of the Property to Restricted Residential Land Use.
- Concentrations of VOCs, PAHs, Metals, and TPH in the soil exceed applicable standards. Targeted soil removal and treatment remedies will be implemented, such that COC concentrations meet the Restricted Residential land use category.
- Concentrations of COCs in groundwater at the Property require Groundwater Use Restriction through an Environmental Covenant, such that, groundwater underlying the Property shall not be extracted or used for any purpose, potable or otherwise, except in conjunction with construction or excavation activities or maintenance of subsurface utilities as necessary.
- Concentrations of VOCs is sub-slab vapor, soil vapor, and shallow groundwater (<15' bgs) dictate an Environmental Covenant will be implemented to include limitations whereby, prior to any human occupancy of these buildings or future buildings, a demonstration that applicable standards are met or a remedy that eliminates vapor intrusion to indoor air exposure shall be installed and maintained as an engineering control.

A Risk Mitigation Plan (RMP) will be developed to protect construction and excavation workers at the Property from exposure to COCs in subsurface soil and groundwater. The RMP must be implemented whenever construction or excavation activities occur at or below two (2) feet in depth due to the presence of VOCs, metals, TPH, and PAHs.

An Operation and Maintenance Plan (O&M Plan) will be put into place to manage engineering controls implemented at the Property. Engineering controls will consist of a two (2) foot thick soil cover or pavement controls in areas where soil removal or treatment are not possible.

The presence of the 14,000-gallon Fuel Oil UST at IA-54 on Parcel 5 evidenced during the ground penetrating radar (GPR) survey should be addressed with the Ohio Bureau of Underground Storage Tank Regulations (BUSTR) closure activities.

September 12, 2023

12.2 Risk Mitigation Plan

An RMP will be prepared to assist construction and excavation workers in managing the risk associated with the presence of metals in soil. Risk mitigation measures are those health and safety precautions and other such activities that provide protection to persons working in construction or excavation from exposures to COCs in impacted environmental media, as described by OAC 3745-300-11. Implementation of the RMP allows the Property to maintain compliance with applicable standards for construction and excavation activities.

13.0 COMPLIANCE WITH APPLICABLE STANDARDS

3745-300-07(J)(14) and 3745-300-07(I)

Applicable standards are met at the Property for residential land use, commercial/industrial use, and construction/excavation activities with the Environmental Covenant, RMP and O&M Plan in place.

Sufficient testing was completed to determine the nature and extent of the contaminants of concern on the Property. The exposure scenarios used to evaluate risk and compliance with standards are based on the implementation of an Environmental Covenant, which will include restrictions on land use, an RMP to assist construction and excavation workers with risks in soil, and an O&M Plan for the SSD system engineering control. With these controls in place the Property meets the requirements for No Further Action under OAC 3745-300.

Personnel profiles are included in **Appendix H**. Signatures of the primary authors are provided below.

DRAFT

Halle A. Miller Project Manager John T. Garvey, CP-118 Vice President
14.0 **BIBLIOGRAPHY**

HzW Environmental Consultants, LLC, Voluntary Action Program Phase II Property Assessment: Former National Acme Facility 170 East Street, Cleveland, Cuyahoga County, Ohio, February 2009

HzW Environmental Consultants, LLC, Voluntary Action Program Phase I Property Assessment: Permanent Parcel Numbers 111-20-002 and 111-20-003, 170 and 221 East 131st Street, Cleveland, Cuyahoga County, Ohio, February 2009

Ohio EPA, Issuance of Covenant Not to Sue for the Former National Acme Property (09NFA364), 170 and 221 East 131st Street, Cleveland, Cuyahoga County, Ohio, January 2012

HzW Environmental Consultants, LLC, 2016 Annual Operations and Maintenance (O&M) Plan Report, Notification of Risk Mitigation Plan (RMP) Activities, and Activity Use Restriction Notification (AURN) for Former National ACME Facility, 170 East 131st Street, Cleveland, Cuyahoga County, OHIO (09NFA364), October 2017

Partners Environmental Consulting, Inc., Ohio Environmental Protection Agency Voluntary Action Program Phase I Property Assessment: Commercial Lot Eddy-Kirby Seven (7) Parcels, Cleveland, Cuyahoga County, Ohio, April 2023

ODNR, Division of Geological Survey, Surficial Geology of Cleveland South 30 x 60 Minute Quadrangle, 2006.

ODNR, Division of Water, Groundwater Resources of Cuyahoga County.

ODNR Division of Soil and Water Resources, Groundwater Mapping and Technical Services Water Well Locator: <u>http://www.dnr.state.oh.us/water/maptechs/wellogs/app/</u>.

OAC 3745-300-08, Generic Numerical Standards Rule for the Voluntary Action Program.

OAC 3745-300-10, *Ground Water Classification and Response Requirements* for the Voluntary Action Program.

Ohio EPA 2020, Sample Collection and Evaluation of Vapor Intrusion to Indoor Air for Remedial Response, RCRA and VAP.

Ohio EPA, 2019. Chemical Information Database and Applicable Regulatory Standards (CIDARS) Database.

Ohio EPA, Technical Guidance Compendium VA30009.14.003, Supplemental Values for Chemicals of Concern without Generic Numerical Standards.

USEPA, 2002. Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. Office of Emergency and Remedial Response. OSWER 9285.6-10.

USEPA, 2009. *Risk Assessment Guidance for Superfund: Volume I- Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment)*. Final. USEPA, Office of Emergency and Remedial Response. EPA/540R/070/002.

USEPA. 2010. *Exposure Factors Handbook*. U.S. Environmental Protection Agency, Office of Health and Environmental Assessment.

USEPA. IRIS: Integrated Risk Information System. U.S. Environmental Protection Agency. Office of Research and Development. <u>http://www.epa.gov/iris/</u>

FIGURES

LEGEND

SOIL BORING/MONITORING WELL

PRIOR HzW MONITORING WELL

PRIOR HzW SOIL BORING

DISTRIBUTION OF COC EXCEEDANCES IN SOIL MAP

VAP PHASE II PROPERTY ASSESSMENT

EDDY-KIRBY, PARCELS 4 & 5 CLEVELAND, CUYAHOGA COUNTY, OHIO

FOR: CUYAHOGA COUNTY DEPARTMENT OF PUBLIC WORKS

2093.10A

31100 Solon Road, Suite G Solon, Ohio 44139 800-763-1363 SCALE: 1" = 200' 4B	DPARTNERS 31100 Solon Road, Suite G Solon, Ohio 44139 800-763-1363	100 0 200 SCALE: 1" = 200'	FIGURE 4B
--	--	-------------------------------	--------------

Residential	Result (mg/l)
0.015	0.0236

				Result	
	HzW-02		(mg/l) Date		
		Residential			
	VOCs		3/31/2000	10/5/2000	11/2/2000
	1,1-Dichloroethane	0.028	0.0519	0.471	0.341
	1, 1-Dichloroethene	0.007	0.0103	0.0527	0.0383
/	cis-1,2-Dichloroethene	0.07	0.0799	0.466	0.29
	1, 1, 1, - Trichloroethane	0.2	ND	0.521	0.296
	Trichloroethene	0.005	0.268	1.66	0.999

			Result (mg/l) al Date		
	HzW-03				
-		Residential			
	VOCs		3/31/2000	6/8/2004	7/1/2004
	Trichloroethene	0.005	0.0183	0.0247	0.0263

MW-3		Result (mg/l)		Result (mg/l)	ult 1/1)
	Residential	Da	te		
VOCs		3/31/2000	3/14/2001		
Vinyl Chloride	0.002	0.00857	0.0048		
1,2-Dichloroethane	0.005	ND	0.00542		
Metals					
Lead	0.015	NT	0.0405		

	H-W/ 04			
	7/20/2000	Residential	Result	
	VOCs		(mg/i)	
	Trichloroethene	0.005	0.0134	
			Res	ult
	HzW-12	HzW-12	(mg	n/I)
		Residential	Da	te
	1000	1	40/0/2000	44/0/000

P5-IA54-MW01 6/29/2023	Residential	Result
PAHs	-	(mg/l)
1-Methylnaphthalene	0.011	0.0118

3. All results are presented in micrograms per square meter (ug/m3)

sidential	Result (ug/m³)
70	1,200

	6 8/15/2008	Residential	Result
	VOCs		(ug/m [~])
	Trichloroethene	70	4,100
~			

D4 1404 51/01		
6/27/2023	Residential	Result
VOCs		(ug/m)
Naphthalene	28	451
Trichloroethene	70	298

	0		
_	8/15/2008	Residential	Result
	VOCs		(ug/m)
	Benzene	120	320
	Ethylbenzene	366	520
	Trichloroethene	70	1,000

D4 1407 CV01		
6/27/2023	Residential	Result
VOCs		(ug/m)
Naphthalene	28	4,480

LEGEND

SOIL VAPOR IMPLANT SUB-SLAB VAPOR POINT

PRIOR HZW SOIL GAS SAMPLE

DISTRIBUTION OF COC EXCEEDANCES IN SUB-SLAB VAPOR & SOIL GAS MAP

VAP PHASE II PROPERTY ASSESSMENT

EDDY-KIRBY, PARCELS 4 & 5 CLEVELAND, CUYAHOGA COUNTY, OHIO

FOR: CUYAHOGA COUNTY DEPARTMENT OF PUBLIC WORKS

2093.10A

CONCEPTUAL SITE MODEL

COMMERCIAL LOTS

170 EAST 131ST STREET CLEVELAND, CUYAHOGA COUNTY, OHIO 2093.10A

9/2/2023 6.dwg PA\CAD\Figure ∎ VAP Eddy-Kirby Works\2093.10A of Public County Department Cu yahoga Files\2093 P: \Project

Table 1: Summary of Identified Areas and Chemicals of Concern Eddy-Kirby Property, Parcels 4 & 5 Cleveland, Ohio

IA	Location	Description	Chemicals of Concern (COCs)
1		10 abandoned USTs and associated oil pit	VOC, PAH, TPH
1A		Milling machine area	VOC, PAH, RCRA 8 Metals
2		Former degreaser pit	VOC, PAH, RCRA 8 Metals, PCB
3		Heat treating and associated quench pits	VOC, PAH, RCRA 8 Metals, PCB
4		Former tin plating	VOC, PAH, RCRA 8 Metals
5		Pickling area	VOC, PAH, RCRA 8 Metals
6		Dip tank area	VOC, PAH, RCRA 8 Metals
7	Parcel 4: PN 111-20-002;	Solvent tank	VOC, PAH, RCRA 8 Metals, PCB
8	Former National Acme Company	Outdoor oil staining	VOC, PAH, TPH
9		Former coal and exterior drum storage area	VOC, PAH, TPH, RCRA 8 Metals, PCB
10		Former incinerator	VOC, PAH, RCRA 8 Metals
11		Metal chip pit and conveyor line	VOC, PAH, RCRA 8 Metals
12		Four former aboveground oil storage tanks	VOC, PAH, TPH
13		Former 20,000 gallon Heating Oil UST/Pipe Manifold for IA 1 USTs	VOC, PAH, TPH
14		Railroad Spur	VOC,PAH
GC		General Coverage	VOC, PAH, RCRA 8 Metals
51		Transformer house 1	VOC, PAH, PCB
52		Transformer house 2	VOC, PAH, PCB
53		Four reported tanks	VOC, PAH, TPH
54	Parcel 5: PN 111-19-010;	14,000 gallon fuel oil UST	VOC, PAH, TPH
55	Parcel 5: PN 111-19-010; Former Elyria Steel/Republic Steel	Pickling room	VOC, PAH, RCRA 8 Metals
56		Machine shop	VOC, PAH
57		Automotive Scrap Garage with eight (8) ASTs	VOC, PAH, TPH, RCRA 8 Metals
GC		General Coverage	VOC, PAH, RCRA 8 Metals

Identified Area								Laboratory A	Analysis perfe	ormed by Pac	e Analytical (CL#00	69)
Identified Area	Boring/ Well/ Sample ID	Installation Date	Sample/Drill Method	Total Depth (feet)	VC EPA Me	DC - thod 8260	PA EPA Met	AH - thod 8270	RCRA EPA Metho	Metals - od 6010/7470	TPH (C6-34) - EPA Method 8015	E
					Soil	GW	Soil	GW	Soil	GW	Soil	s
						Par	cel 4		1	1	•	
	P4-IA01-SB01	6/14/2023	DP	10	1	-	1	-	-	-	1	
	P4-IA01-MW01	6/14/2023	DP / HSA	13	1	1	1	1	-	-	1	
	P4-IA01-VI01	6/14/2023	DP	4	-	-	-	-	-	-	-	
	HzW-01	3/24/2000	DP / HSA	15	1	2	1	3	-	-	-	
1^	HzW-04	7/20/2000	DP / HSA	15	-	2	-	2	-	1	-	
	HB-102	10/3/2007	DP	8	2	-	2	-	-	-	1	
	HB-103	10/3/2007	DP	8	2	-	2	-	-	-	2	
	B-104	12/11/2008	DP	8	2	-	2	-	-	-	2	
	HB-101	10/3/2007	DP	8	2	-	2	-	-	-	2	
	HzW-02	3/27/2000	HSA	15	1	3	1	1	-	-	-	
	HzW-03	3/24/2000	HSA	15	1	3	1	2	-	-	-	
1A*	MW-2	8/25/1993	HSA	13	-	2	-	1	-	1	-	
	HB-100	10/3/2007	DP	8	1	-	2	-	-	-	-	
	B-105	12/11/2008	DP	8	2	-	2	-	-	-	-	
	B-106	12/11/2008	DP	8	2	-	2	-	-	-	-	
	P4-IA02-SB01	6/14/2023	DP	10	1	-	1	-	1	-	-	
	P4-IA02-SV01	6/27/2023	-	4	-	-		-	-	-	-	
2	B-5/WP-03	3/28/2000	HSA	10	1	10	-	-	-	-	-	
	IA-2-01	10/9/2008	DP	10	2		2	-	-	-	-	
	IA-2-02	10/9/2008	DP	10	2		3	-	-	-	-	
	IA-2-03	10/9/2008	DP	10	2		2	-	-	-	-	
	1	8/15/2008	DP	2		-	-	-	-	-	-	
	2	8/15/2008	DP	2	-	<u> </u>	-	-	-	-	-	
	3	8/15/2008	DP	2	-	-	-	-	-	-	-	
	4	8/15/2008	DP	2	-	-	-	-	-	-	-	
	P4-IA03-SB01	6/14/2023	DP	10	1	-	1	-	1	-	-	
	P4-IA03-MW01	6/14/2023	DP / HSA	13	1	1	1	1	1	1	_	
	P4-IA03-SV01	6/27/2023	DP	-	-	-	-	_	-	-	_	
	B-18	5/25/2000	DP	12	1	-	1	_	-	-	1	
	B-19	5/25/2000	DP	12	1	-	1	-	-	-	1	
	B-20	5/25/2000	DP	12	1	-	1	-	-	-	1	
	B-21	5/25/2000	DP	12	1	-	1	-	-	-	1	
	B-22	5/25/2000	DP	12	1	-	1	_	-	-	1	
	B-30	12/5/2000	DP	12	· ·		_	_	2	_	_	
3	HzW-09	7/20/2000	HSA	LINK		4			-			
		11/8/2007	Aen	UNK	-		-	_	_	_	-	
		11/0/2007	HSA		-	5	-	-	-	7	-	
	H2VV-14	11/2/2000	HSA	UNK	-	2	/	-	-	7	-	
	HZVV-17	12/21/2000	HSA	UNK	-	-	-	-	-	-	-	
	5	8/15/2008	DP	2		-	-	-	-	-	-	
	6	8/15/2008	DP	2	-	-	-	-	-	-	-	
	7	8/15/2008	DP	2	-	-	-	-	-	-	-	
	8	8/15/2008	DP	2	-	-	-	-	-	-	-	
	9	8/15/2008	DP	2	· ·	-	-	-	-	-	-	
	P4-IA04-MW01	6/14/2023	DP / HSA	13	1	1	1	1	1	1	-	
	P4-IA04-SV01	6/27/2023	-	-	-	-	-	-	-	-	-	
	B-31	5/31/2001	DP	10	-	-	-	-	1	-	-	

PCI EPA Met	Bs - hod 8082	VOC - Method 8260, Compendium TO- 15
Soil	GW	Air
	_	
-	-	-
-	-	-
-	-	1
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	
-	-	-
-	-	-
-	-	-
-	-	
-	-	-
-	-	-
1		
I	-	-
-	-	1
-	-	-
-	-	-
-	-	-
-	-	-
-	-	1
-	-	1
-	-	1
_	_	1
4		
1	-	-
1	1	-
-	-	1
-	-	-
_	_	
-	-	
-	-	-
-	-	-
-	-	-
-	-	-
_	_	
-	-	
-	-	-
-	-	-
-	-	
-	-	1
		1
-	-	
-	-	1
-	-	1
-	-	1
-	-	-
_	_	1
-	-	
-	-	

				Laboratory Analysis performed by Pace Analytical (CL#0069)											
Identified Area	Boring/ Well/ Sample ID	Installation Date	Sample/Drill Method	Total Depth (feet)	VC EPA Met	DC - hod 8260	PA EPA Met	H - hod 8270	RCRA I EPA Metho	Metals - d 6010/7470	TPH (C6-34) - EPA Method 8015	PC EPA Met	Bs - hod 8082	VOC - Method 8260, Compendium TO- 15	
					Soil	GW	Soil	GW	Soil	GW	Soil	Soil	GW	Air	
4	B-34	5/31/2001	DP	10	-	-	-	-	4	-	-	-	-	-	
4	B-35	5/31/2001	DP	10	-	-	-	-	5	-	-	-	-	-	
	IA-4-01	9/25/2008	DP	10	-	-	-	-	5	-	-	-	-	-	
	IA-4-02	9/25/2008	DP	10	-	-	-	-	5	-	-	-	-	-	
	IA-4-03	9/25/2008	DP	10	-	-	-	-	5	-	-	-	-	-	
	P4-IA05-SB01	N/A	N/A	N/A	1	-	1	-	1	-	-	-	-	-	
	P4-IA05-SV01	6/27/2023	-	-	-	-	-	-	-	-	-	-	-	1	
	B-36	5/31/2001	DP	6	-	-	-	-	3	-	-	-	-	-	
5	B-37	5/31/2001	DP	6	-	-	-	-	2	-	-	-	-	-	
5	IA-5-01	9/25/2008	DP	10	-	-	-	-	5	-	-	-	-	-	
	IA-5-02	9/25/2008	DP	10	-	-	-	-	5	-	-	-	-	-	
	IA-5-03	9/25/2008	DP	10	-	-	-	-	5	-	-	-	-	-	
	HzW-10	7/20/2000	HSA	UNK	-	1	Laboratory Analysis performed by Pace Analytical (CL40069) PAH. EPA Method 8270 RCRA Metals. EPA Method 60107470 TPH (CS-3) - EPA Method 8015 PCB - EPA Method 80107 VOC - Method 8015 Soil GW Soil GW Soil GW Ar - - 4 - - - 15 - - 5 - - - - - - 5 - - - - - - 5 - - - - 1 - 1 - - - - - - - 5 - - - - - 1 - 1 - - - - - - - - 5 - - - - - - - - - - - - - - - - - -<								
	P4-IA06-SB01	6/13/2023	DP	10	1	-	1	-	1	-	-	-	-	-	
	P4-IA06-VI01	6/13/2023	DP	4	-	-	-	-	-	-	-	-	-	1	
6	IA-6-01	10/9/2008	DP	10	-	-	-	-	2	-	-	-	-	-	
U	IA-6-02	10/9/2008	DP	10	-	-		-	2	-	-	-	-	-	
6 P 6 P P P P P P P P P P P P P	IA-6-03	10/9/2008	DP	10	-	-	-	-	2	-	-	-	-	-	
	HzW-11	11/18/2000	HSA	UNK	-	2	-	-	-	-	-	-	-	-	
	P4-IA07-MW01	6/14/2023	DP / HSA	13	1		1	1	1	1	-	1	1	-	
	P4-IA07-SV01	6/27/2023	-	-	-		-	-	-	-	-	-	-	1	
7	B-03	3/24/2000	DP	10	1	-	-	-	-	-	-	-	-	-	
	IA-7-01	11/13/2008	DP	10	-	-	2	-	-	-	J FOCHARD YOLK (CLAROOD) TPH (C6.34) - EPA Method 8015 PCBs - EPA Method 8082 VOC Method 15 V Soil Soil GW Air - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	-			
	IA-7-02	11/13/2008	DP	10	-	-	2	-	-	-	1	-	-	-	
	N/A	N/A	N/A	N/A	-	-	-	-	-	-	-	-	-	-	
	B-15	3/28/2000	DP	4	1	-	1	-	-	-	1	1	-	-	
8*	IA-8-01	11/13/2008	DP	6	1	-	1	-	-	-	1	-	-	-	
	IA-8-02	11/13/2008	DP	6	1	-	1	-	-	-	1	-	-	-	
	HzW-08	7/20/2000	HSA	UNK	-	4	-	-	-	-	-	-	-	-	
	P4-IA09-SB01	6/13/2023	DP	10	-	-	1	-	1	-	-	-	-	-	
	P4-IA09-VI01	6/13/2023	DP	4	-	-	-	-	-	-	-	-	-	1	
	B-23	5/24/2000	DP	10	1	-	1	-	1	-	-	-	-	-	
	B-24	5/24/2000	DP	12	1	-	1	-	1	-	-	-	-	-	
	B-25	5/24/2000	DP	10	1	-	1	-	1	-	-	-	-	-	
	B-26	5/24/2000	DP	11	1	-	1	-	1	-	-	-	-	-	
	B-27	5/24/2000	DP	8	1	-	1	-	1	-	-	-	-	-	
	B-28	5/24/2000	DP	8	1	-	1	-	1	-	-	-	-	-	
9	B-45	5/24/2000	DP	10	1	-	-	-	2	-	-	-	-	-	
-	B-46	5/24/2000	DP	10	1	-	-	-	2	-	-	-	-	-	
	IA-9-B-01	6/16/2004	DP	8	2	-	1	-	2	-	2	-	-	-	
	IA-9-B-02	6/16/2004	DP	4	2	-	1	-	2	-	2	-	-	-	
	IA-9-B-03	6/16/2004	DP	8	1	-	2	-	1	-	2	-	-	-	
	IA-9-B-04	6/16/2004	DP	8	2	-	2	-	2	-	2	-	-	-	
	HzW-06	7/20/2000	HSA	UNK	-	2	-	1	-	1	-	-	-	-	
	HzW-13	6/9/2004	HSA	UNK	-	2	-		-	-	-	-	-	-	
	HzW-15	11/17/2000	HSA	UNK	-	2	-	1	-	1	-	-	-	-	

								Laboratory A	nalysis perfo	ormed by Pac	e Analytical (CL#00	69)
Identified Area	Boring/ Well/ Sample ID	Installation Date	Sample/Drill Method	Total Depth (feet)	VC EPA Met	DC - thod 8260	P/ EPA Me	\H - thod 8270	RCRA EPA Metho	Metals - d 6010/7470	TPH (C6-34) - EPA Method 8015	E
					Soil	GW	Soil	GW	Soil	GW	Soil	S
	HzW-20	6/1/2001	HSA	UNK	-	2	-	2	-		-	
	P4-IA10-SB01	6/13/2023	DP	10	-	-	1	-	1	-	-	
	B-29	5/25/2000	DP	6	1	-	-	-	1	-	-	
10	IA-10-B-01	6/16/2004	DP	8	1	-	-	-	2	-	-	
	IA-10-B-02	6/16/2004	DP	4	1	-	-	-	1	-	-	
	HzW-18/MW-18	6/9/2004	HSA	UNK	-	1	-	1	-	5	-	
	P4-IA11-MW01	06/02/2022	DP / HSA	13	1	1	1	1	1	1	-	
	B-08	3/24/2000	DP	10	1	-	1	-	-	-	-	
	B-13	3/28/2000	DP	5	1	-	1	-	-	-	1	
11	B-14	3/28/2000	DP	4	1	-	1	-	-	-	1	
	B-IA-11-01	6/11/2004	DP	6	2	-	2	-	-	-	2	
	B-IA-11-02	6/11/2004	DP	7	2	-	2	-	-	-	2	
	HzW-05	7/20/2000	HSA	UNK	-	3	-	4	-	4	-	
	P4-IA12-SB01	6/13/2023	DP	10	1	-	1	-	-	-	1	
	B-06	3/24/2000	DP	10	1	-		-	-	-	1	
	B-07	3/24/2000	DP	10	1	-	1	-	-	-	1	
12	B-09	3/24/2000	DP	10	1	-		-	-	-	1	
12	B-10	3/28/2000	DP	6	1	- 1	1	-	-	-	1	
	B-11	3/28/2000	DP	6	1		1	-	-	-	1	
-	B-16	3/29/2000	DP	10	1		1	-	-	-	1	
	B-IA-12-01	6/11/2004	DP	6	2		-	-	-	-	2	
	HzW-19	6/1/2001	HSA	UNK	- 🗸	2	-	3	-	4	-	
	N/A	N/A	N/A	N/A	-	<u> </u>	-	-	-	-	-	
405	B-38	5/30/2001	DP	15	1	-	1	-	-	-	-	
13^	B-39	5/30/2001	DP	16	1	-	1	-	-	-	-	
	B-40	5/30/2001	DP	15	1	-	1	-	-	-	-	
	P4-IA14-SB01	6/13/2023	DP	4	1	-	1	-	1	-	-	
	P4-IA14-SB02	6/13/2023	DP	4	1	-	1	-	1	-	-	
	P4-IA14-SB03	6/19/2023	DP	4	1	-	1	-	1	-	-	
	B-41	5/30/2001	DP	4	1	-	1	-	2	-	1	
	B-41A	5/30/2001	DP	6	2	-	3	-		-	1	
	B-42	5/30/2001	DP	4	1	-	1	-	2	-	1	
	B-42A	6/10/2004	DP	4	3	-	3	-	2	-	2	
14	B-44A	6/10/2004	DP	4	1	-	2	-	2	-	1	
	B-IA-14-1	6/10/2004	DP	6	3	-	3	-	3	-	3	
	B-IA-14-2	6/10/2004	DP	6	3	-	3	-	3	-	3	
	B-IA-14-3	6/10/2004	DP	6	3	-	3	-	3	-	3	
	B-IA-14-4	6/10/2004	DP	6	3	-	3	-	3	-	3	
	HzW-07	7/20/2000	HSA	UNK	-	2	-	1	-	1	-	
	HzW-12	10/9/2000	HSA	UNK	-	2	-	-	-	-	-	
	HzW-21	6/8/2004	HSA	UNK	-	3	-	2	-	2	-	
Concerci Courses at	P4-GC-SB01	6/19/2023	DP	10	1	-	1	-	1	-	-	
General Coverage**	P4-GC-MW01	6/19/2023	DP / HSA	20	1	1	1	1	1	1	-	
						Par	cel 5					
E4	P5-IA51-SB01	6/22/2023	DP	4	-	-	1	-	-	-	1	
51	P5-IA51-SB02	6/22/2023	DP	4	-	-	1	-	-	-	1	1

PC EPA Me	CBs - thod 8082	VOC - Method 8260, Compendium TO- 15
Soil	GW	Air
-	-	-
-	-	-
-	-	-
-	_	_
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	_	_
-	<u> </u>	_
_	_	
-	+ -	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	_
-		
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
	•	
1	-	-
1	1	
	-	-

							I	Laboratory /	Analysis perfo	rmed by Pac	e Analytical (CL#000	5 9)		
Identified Area	Boring/ Well/ Sample ID	Installation Date	Sample/Drill Method	Total Depth (feet)	VC EPA Met	0C - hod 8260	PA EPA Met	H - hod 8270	RCRA I EPA Metho	Metals - d 6010/7470	TPH (C6-34) - EPA Method 8015	PC EPA Met	Bs - hod 8082	VOC - Method 8260, Compendium TO- 15
					Soil	GW	Soil	GW	Soil	GW	Soil	Soil	GW	Air
52	P5-IA52-SB01	6/21/2023	DP	4	-	-	1	-	-	-	1	1	-	-
52	P5-IA52-SB02	6/21/2023	DP	4	-	-	1	-	-	-	1	1	-	-
	P5-IA53-SB01	6/20/2023	DP	10	1	-	1	-	1	-	1	-	-	-
53	P5-IA53-MW01	6/20/2023	DP / HSA	19	1	1		1	1	1	-	-	-	-
	P5-IA53-SV01	6/20/223	DP	5	-	-	-	-	-	-	-	-	-	1
	P5-IA54-SB01	6/21/2023	DP	10	1	-		-	-	-	1	-	-	-
54	P5-IA54-MW01	6/21/2023	DP / HSA	20	1	1	1	1	-	1	1	-	-	-
	P5-IA54-VI01	6/21/2023	DP	4	-		-	-	-	-	-	-	-	1
55	P5-IA55-SB01	6/22/2023	DP	10	1		1	-	1	-	-	-	-	-
55	P5-IA55-VI01	04/13/2022	DP	2	-		-	-	-	-	-	-	-	1
	P5-IA56-SB01	6/22/2023	DP	10	1		1	-	1	-	-	-	-	-
56	P5-IA56-MW01	6/22/2023	DP / HSA	21	1	1	1	1	1	1	-	-	-	-
	P5-IA56-VI01	6/22/2023	DP	2	-	-	-	-	-	-	-	-	-	1
	P5-IA57-SB01	6/19/2023	DP	10	1	-	1	-	1	-	1	-	-	-
57	P5-IA57-MW01	6/21/2023	DP / HSA	16	1	1	1	1	1	1	1	-	-	-
	P5-IA57-VI01	6/27/2023	-	-	-	-	-	-	-	-	-	-	-	1
	P5-GC-SB01	6/20/2023	DP	10	1	-	1	-	1	-	-	-	-	-
Conorol Coverage at	P5-GC-SB02	6/22/2023	DP	10	1	-	1	-	1	-	-	-	-	-
General Coverage**	P5-GC-SB03	6/22/2023	DP	10	1	-	1	-	1	-	-	-	-	-
	P5-GC-MW01	6/21/2023	DP / HSA	20	1	1	1	1	1	1	-	-	-	-

Notes:

*No direct access to IAs 1, 1A, 8, and 13; Covered by previous assessment and nearby sampling locations

**General coverage samples not assocaited with a particular IA, but intended to fill in gaps from inaccessible IAs, etc.

Table 3: Groundwater Monitoring Well Information Eddy-Kirby Property, Parcels 4 & 5 Cleveland, Ohio

Well ID	Depth of Well (ft. TOC)	Top of Casing Elevation (AMSL)	Date	Depth to Groundwater, feet (TOC)	Groundwater Elevation (AMSL)
	12.82		6/28/2023	3.93	
1 4-1A01-1010001	12.02		TBD		
P4-1403-MW/01	12 27		6/28/2023	7.11	
1 4-1A03-101001	12.21		TBD		
	8 17		6/28/2023	3.9	
1 4-1704-1010001	0.17		TBD		
	12.18		6/28/2023	5.2	
1 4-1707-1010001	12.10		TBD		
	12.02		6/28/2023	6.03	
F4-IA11-WW01	12.92		TBD		
	10.68		6/29/2023	7.44	
1 4-00-10001	19.00		TBD		
	19.55		6/30/2023	11.53	
1 3-1A33-101001	10.00		TBD		
P5-1054-MW/01	10.85		6/29/2023	14.56	
1 3-1734-101001	19.00		TBD		
P5-1056-MW/01	20.80		6/29/2023	11.09	
1 3-1730-101001	20.05		TBD		
P5-1457-MW/01	15.02		6/30/2023	10.54	
	10.32		TBD		
P5-GC-MW01	19.68	-	6/29/2023	10.46	
P5-GC-MW01	13.00		TBD		

Notes:

Survey not completed at this time, therefore no elevations are noted.

Depth to groundwater not calculated at this time.

Table 4A: Summary of VC	ble 4A: Summary of VOCs in Soil Idy-Kirby Parcels, Cleveland, Cuyahoga County, Ohio								10.01							10.010		
Eduy-Kirby Parcels, Cleve	elanu, Cu	iyanoga County,	, 01110					115 (00	IA-01		115 (00	115 464	5.494					
Sample ID (Depth ¹)		Å	Applicable Standa	rds	P4-IA01-SB01 (0 2)	P4-IA01-MW01 (0-2)	HzW-01 (14-15) *	HB-102 (4-6) *	HB-102 (6-8) *	HB-103 (4-6' *	HB-103 (6-8) *	HB-104 (0-2) *	B-104 (6-8) *	HB-101 (0-4) *	HB-101 (6-8) *	HzW-02 (8-10) *	HzW-03 (14-15) *	HB-100 (0-4) *
Collection Date		GDCS Residential	GDCS Commercial Industrial	GDCS Construction	6/14/2023	6/14/2023	3/24/2000	10/3/2007	10/3/2001	10/3/2007	10/3/2007	12/11/2008	12/11/2008	10/3/2007	10/3/2007	3/27/2000	3/24/2000	10/3/2007
Parameter	Units ²	Land Use ³	Land Use 4	Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds -	VOCs		1			1 1		1		I		1	•					
Acetone	mg/kg	110,000	110,000	110,000	0.0612 J	<0.0667	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	mg/kg	6.1	30	62	<0.0177	<0.0167	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Benzene	mg/kg	28	130	1,200	< 0.00142	< 0.00133	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	mg/kg	NE 7.2	NE	NE 200	<0.0177	<0.0167	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND
Bromoform	mg/kg	460	910	910	<0.00355	<0.00334					ND		ND	ND				
Bromomethane	mg/kg	17	76	550	< 0.0177	< 0.0167	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	mg/kg	110 ⁶	110 ⁶	110 ⁶	<0.0177	<0.0167	ND	ND	ND	ND	ND	0.00786	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	mg/kg	140 ⁶	140 ⁶	140 ⁶	<0.0177	<0.0167	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	mg/kg	<u>180 ⁶</u>	180 ⁶	180 ⁶	<0.00710	<0.00667	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	mg/kg	16	74	460	< 0.00710	< 0.00667	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	mg/kg	660	760	760	0.00039 J	<0.00334	ND NT	ND NT	ND	ND NT	ND	ND NT	ND NT	ND NT		ND	ND NT	ND
Chloroethane	mg/kg	2 100	2 100	2 100	<0.00333	<0.00334					ND							
Chloroform	ma/ka	7.9	35	320	<0.00355	< 0.00334	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	mg/kg	280	1,200	1,300	<0.0177	< 0.0167	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	mg/kg	NE	NE	NE	<0.00355	<0.00334	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorotoluene	mg/kg	NE	NE	NE	< 0.00710	< 0.00667	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-Chloropropane	mg/kg	0.37	1.6	15	<0.0355	< 0.0334	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
Dibromomethane	mg/kg	0.89	4.2 250 6	870.6	<0.00355	<0.00334	ND		ND		ND	ND	ND					ND
1 2-Dichlorobenzene	ma/ka	380	380	380	<0.00710	<0.00007		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1.3-Dichlorobenzene	ma/ka	NE	NE	NE	< 0.00710	< 0.00667	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	mg/kg	65	290	2,600	<0.00710	<0.00667	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	mg/kg	850	850	850	<0.00355 J3	<0.00334 J3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	mg/kg	89	390	1,700	<0.00355	<0.00334	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	0.692	ND ND	ND
1,2-Dichloroethene	mg/kg	360	1 200	360	<0.00355	<0.00334					ND		ND					
cis-1,2-Dichloroethene	mg/kg	310	2,400	2,400	< 0.00355	< 0.00334	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.938	ND	ND
trans-1,2-Dichloroethene	mg/kg	1,900	1,900	1,900	<0.00710	<0.00667	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	mg/kg	39	170	180	<0.00710	< 0.00667	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	mg/kg	NE 1.500	NE 1.500	NE 1.500	< 0.00355	<0.00334	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
cis-1 3-Dichloropropane	mg/kg	1,500 NE	1,500 NE	1,500 NF	<0.00710	<0.00667					ND							
trans-1.3-Dichloropropene	ma/ka	NE	NE	NE	< 0.00710	<0.00667	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	mg/kg	NE	NE	NE	<0.00355	<0.00334	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	mg/kg	140	480	480	<0.00355	<0.00334	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloro-1,3-butadiene	mg/kg	17	17	17	<0.0355	<0.0334	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Hexane	mg/kg	140	140	140	< 0.00710	<0.00667	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	mg/kg	270	270	270	<0.00355	<0.00334			ND									
2-Butanone (MEK)	mg/kg	28,000	28,000	28,000	<0.00710													
Methylene Chloride	ma/ka	740	3,300	3.300	<0.0355	<0.0334	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND
4-Methyl-2-pentanone (MIBK)	mg/kg	3,400	3,400	3,400	< 0.0355	< 0.0334	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE)	mg/kg	1,100	5,400	8,900	<0.00142	<0.00133	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	mg/kg	96	420	560	0.0179	0.332	ND	ND	ND	ND	ND	0.276	ND	ND	ND	ND	ND	ND
n-Propylbenzene	mg/kg	260 °	260 °	260 °	<0.00710	< 0.00667	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	mg/kg	870	870	870	0.00138 B J	<0.0167	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND
1,1,2-Tetrachloroethane	mg/kg	49	230	670	<0.00355	<0.00334					ND		ND					
Tetrachloroethene (PCE)	mg/kg	170	170	170	<0.00355	< 0.00334	ND	0.0137	ND	0.0153	ND	ND	ND	0.00923	ND	ND	ND	ND
Toluene	mg/kg	820	820	820	<0.00710	<0.00667	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	mg/kg	NE	NE	NE	<0.0177	<0.0167	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	mg/kg	140	400	400	<0.0177	<0.0167	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-I richloroethane	mg/kg	640	640	640	<0.00355	<0.00334			ND		ND ND		ND ND	0.037		5.12		0.0266
Trichloroethene (TCF)	ma/ka	10	48	17	<0.00355	<0.00334	ND		ND	ND	ND	0.16	2.27	0,153	3.61	38.7	ND	0.0954
Trichlorofluoromethane	mg/kg	1,200	1,200	1,200	<0.00355 J3	<0.00334 J3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	mg/kg	0.1	4.4	19	<0.0177	<0.0167	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	mg/kg	220	220	220	<0.00710	0.0038 J	ND	ND	ND	ND	ND	0.0255	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	mg/kg	180	180	180	<0.00710	<0.00667	ND	ND	ND	ND	ND	0.00773	ND	ND	ND	ND	ND	ND

Eddy-Kirby Parcels, Cleve	y-Kirby Parcels, Cleveland, Cuyahoga County, Ohio								IA-01							IA-01A		
Sample ID (Depth ¹)		A	Applicable Standard	ds	P4-IA01-SB01 (0- 2)	P4-IA01-MW01 (0-2)	HzW-01 (14-15) *	HB-102 (4-6) *	HB-102 (6-8) *	HB-103 (4-6' *	HB-103 (6-8) *	HB-104 (0-2) *	B-104 (6-8) *	HB-101 (0-4) *	HB-101 (6-8) *	HzW-02 (8-10) *	HzW-03 (14-15) *	HB-100 (0-4) *
Collection Date		GDCS Residential	GDCS Commercial/	GDCS Construction	6/14/2023	6/14/2023	3/24/2000	10/3/2007	10/3/2001	10/3/2007	10/3/2007	12/11/2008	12/11/2008	10/3/2007	10/3/2007	3/27/2000	3/24/2000	10/3/2007
Parameter	Units ²	Land Use ³	Land Use 4	Activities 5	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds -	VOCs																	
Vinyl chloride	mg/kg	1.3	49	280	<0.00355	<0.00334	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	mg/kg	260	260	260	<0.00923	<0.00867	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Notes 1. FT - Feet below grade 2. mg/kg = Milligrams per kilogram - part 3. Ohio VAP GDCS Residential Land Usi 4. Ohio VAP GDCS Commercial/Industri 5. Ohio VAP GDCS Construction/Excave 6. Supplemental standards from the Ohio NE: No standard established by applicab Bold numbers indicate a concentration a Bold and shaded numbers indicate a det	s per million (pp a. al Land Use. attion Activities. VAP CIDARS le agency bove laboratory acted concentra	om) r detection limits. tition above a compariso	n standard. If exceeding r	more than one standard, th	e most strict one is hig	hlighted.		¢,	Laboratory Qualifiers J - The identification of B- The same analyte i J3 - The associated bat J4- The associated bat J5 - The sample matrix J6: The sample matrix J7: Surrogate recover O1: The analyte failed	the analyte is accepta s found in the associat tch QC was outside the ch QC was outside the interfered with the abi interfered with the abi v cannot be used for co the method required s	ble; the reported value and blank. e establish quality con e established quality con lity to make any accura- lity to make any accura ontrol limit evaluation of erial dilution test and/or	ris an estimate. Irol range for precision. Introl range for accurac ate determination; spike te determination; spike lue to dilution r subsequent post-spik	y. ∍ value is high. ∍ value is low ke criteria. These failure	s indicate matrix interfe	erence.			

*: Samples collected by HzW

ND: No Detections

Eddy-Kirby Parcels, Cleveland, Cuyahoga County, Ohio							IA-01A							IA-02				
Sample ID (Depth ¹)		A	pplicable Standard	ds	HB-100 (6-8) *	B-105 (4-6) *	B-105 (6-8) *	B-106 (5-7) *	B-106 (3-5) *	P4-IA02-SB01 (4- 6)	Duplicate 1 (P4- IA02-SB01)	B-5 (8-10) *	IA-2-01 (0-2)*	IA-2-01 (2-4) *	IA-2-02 (0-4)	IA-2-02 (4-6) *	IA-2-02 (6-8) *	IA-2-03 (0-4) *
Collection Date		GDCS Residential	GDCS Commercial/	GDCS Construction	10/3/2007	12/11/2008	12/11/2008	12/11/2008	12/11/2008	6/14/2023	6/14/2023	3/28/2000	10/9/2008	10/9/2008	10/9/2008	10/9/2008	10/9/2008	10/9/2008
Parameter	Units ²	Land Use ³	Land Use ⁴	Activities 5	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds -	VOCs					•				•			•			•		•
Acetone	mg/kg	110,000	110,000	110,000	ND	ND	ND	ND	ND	< 0.0756	<0.0767	ND	ND	ND	0.146	ND	ND	ND
Acrylonitrile	mg/kg	6.1	30	62	NT	NT	NT	NT	NT	<0.0189	<0.0192	NT	NT	NT	NT	NT	NT	NT
Benzene	mg/kg	28	130	1,200	ND	ND	ND	ND	ND	<0.00151	<0.00153	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	mg/kg	NE	NE	NE	ND	ND	ND	ND	ND	<0.0189	<0.0192	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	mg/kg	7.3	33	300	ND	ND	ND	ND	ND	<0.00378	<0.00383	ND	ND	ND	ND	ND	ND	ND
Bromoform	mg/kg	460	910	910	ND	ND ND	ND	ND ND	ND	<0.0378	< 0.0383	ND	ND	ND	ND	ND	ND ND	ND
Bromomeinane	mg/kg	110.6	/0	<u> </u>	ND	ND ND	ND	ND	ND	<0.0189	<0.0192		ND	ND	ND	ND		ND
	mg/kg	140.6	140.6	140.6	ND				ND	<0.0189	<0.0192			ND		ND		
tert Butylbenzene	mg/kg	180 6	180 6	180 6	ND				ND	<0.0189	<0.0192		ND	ND		ND		ND
Carbon tetrachloride	ma/ka	16	74	460	ND		ND		ND	<0.00756	<0.00707		ND	ND		ND		ND
Chlorobenzene	ma/ka	660	760	760	ND	ND	ND	ND	ND	0.000378 J	< 0.00383	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane	mg/kg	130	800	800	NT	NT	NT	NT	NT	< 0.00378	<0.00383	NT	NT	NT	NT	NT	NT	NT
Chloroethane	mg/kg	2,100	2,100	2,100	ND	ND	ND	ND	ND	<0.00756	<0.00767	ND	ND	ND	ND	ND	ND	ND
Chloroform	mg/kg	7.9	35	320	ND	ND	ND	ND	ND	<0.00378	<0.00383	ND	ND	ND	ND	ND	ND	ND
Chloromethane	mg/kg	280	1,200	1,300	ND	ND	ND	ND	ND	<0.0189	<0.0192	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	mg/kg	NE	NE	NE	ND	ND ND	ND	ND	ND	<0.00378	<0.00383	ND	ND	ND	ND	ND	ND ND	ND
4-Chlorotoluene	mg/kg	<u>NE</u>	NE 1.6	NE 1E	ND	ND ND	ND		ND	<0.00756	<0.00767		ND	ND	ND	ND		ND
1,2-Dibromoethane (EDB)	mg/kg	0.37	1.0	15	ND				ND	<0.0378	<0.0383		ND	ND		ND		ND
Dibromomethane	mg/kg	59	250 6	870 6	ND		ND		ND	<0.00378	<0.00303		ND	ND		ND		ND
1 2-Dichlorobenzene	ma/ka	380	380	380	ND	ND	ND	ND	ND	<0.00756	<0.00767	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	mg/kg	NE	NE	NE	ND	ND	ND	ND	ND	< 0.00756	< 0.00767	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	mg/kg	65	290	2,600	ND	ND	ND	ND	ND	<0.00756	<0.00767	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	mg/kg	850	850	850	ND	ND	ND	ND	ND	<0.00378 J3	<0.00383 J3	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	mg/kg	89	390	1,700	ND	ND	ND	ND	ND	<0.00378	< 0.00383	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane (EDC)	mg/kg	11	52	480	ND	ND ND	ND	ND	ND	<0.00378	<0.00383	ND	ND	ND	ND	ND	ND ND	ND
1,1-Dichloroethene	mg/kg	360	1,200	360	ND		0.589	1.69	7.49	<0.00378	<0.00383	ND 25.2		ND	ND 0.0589	ND 0.0114		ND 0.0531
trans-1 2-Dichloroethene	ma/ka	1,900	1 900	1 900	ND	ND	ND	4.03	ND	<0.00756	<0.0127	 ND	ND	ND	ND	ND	ND	ND
1.2-Dichloropropane	ma/ka	39	170	180	ND	ND	ND	ND	ND	< 0.00756	< 0.00767	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	mg/kg	NE	NE	NE	ND	ND	ND	ND	ND	< 0.00378	<0.00383	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	mg/kg	1,500	1,500	1,500	ND	ND	ND	ND	ND	<0.00756	<0.00767	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	mg/kg	NE	NE	NE	ND	ND	ND	ND	ND	<0.00378	<0.00383	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	mg/kg	NE	NE	NE	ND	ND	ND	ND	ND	< 0.00756	<0.00767	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	mg/kg	NE	NE	NE	ND	ND	ND	ND	ND	<0.00378	<0.00383	ND	ND	ND	ND	ND	ND	ND
	mg/kg	140	480	480	ND	ND ND	ND	ND ND	ND	<0.00378	<0.00383	ND	ND	ND	ND	0.00907	28.1	ND
Hexachioro-1,3-butadiene	mg/kg	17	1/	17	ND				ND	<0.0378	<0.0383		ND NT			ND		ND
	mg/kg	270	270	270						<0.00730	<0.00707							
p-lsopropylbenzene	ma/ka	160	260.6	260.6	NT	NT	NT	NT	NT	<0.00376	<0.00303	NT	NT	NT	NT	NT	NT	NT
2-Butanone (MEK)	ma/ka	28,000	28,000	28,000	ND		ND		ND	<0.151	<0.153	ND	ND	ND		ND		ND
Methylene Chloride	ma/ka	740	3,300	3,300	ND	ND	ND	ND	ND	<0.0378	< 0.0383	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone (MIBK)	ma/ka	3,400	3,400	3,400	ND	ND	ND	ND	ND	<0.0378	< 0.0383	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE)	mg/kg	1,100	5,400	8,900	ND	ND	ND	ND	ND	<0.00151	<0.00153	ND	ND	ND	ND	ND	ND	ND
Naphthalene	mg/kg	96	420	560	ND	ND	ND	ND	ND	<0.0189	<0.0192	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	mg/kg	260 °	260 °	260 °	ND	ND	ND	ND	ND	<0.00756	<0.00767	ND	ND	ND	ND	ND	ND	ND
Styrene	mg/kg	870	870	870	ND	ND	ND	ND	ND	0.00125 B J	0.00111 B J	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	mg/kg	49	230	680	ND	ND	ND	ND	ND	<0.00378	<0.00383	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	mg/kg	15	71	670	ND	ND ND	ND 0.070		ND	<0.00378	<0.00383	ND	ND ND	ND		ND 0.0000		ND
Toluopo	mg/kg	170	170	170			0.976	51 ND	33.9	<0.00378		10.9				0.0322	16.ð	
1 2 3-Trichlorobenzene	mg/kg	020 NF	020 NF	020 NF							<0.00707							
1.2.4-Trichlorobenzene	ma/ka	140	400	400	ND	ND	ND	ND	ND	<0.0189	<0.0192	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	mg/kg	640	640	640	0.916	0.357	2.33	147	68.9	< 0.00378	< 0.00383	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	mg/kg	28	130	1,200	ND	ND	ND	ND	ND	<0.00378	<0.00383	ND	ND	ND	ND	ND	ND	ND
Trichloroethene (TCE)	mg/kg	10	48	17	3.72	2.21	15.2	291	67.9	0.029	0.0932	518	4.4	1.24	0.0172	0.0653	115	0.0115
Trichlorofluoromethane	mg/kg	1,200	1,200	1,200	ND	ND	ND	ND	ND	<0.00378 J3	<0.00383 J3	ND	ND	ND	ND	ND	ND	ND
1,2,3-1 richloropropane	mg/kg	0.1	4.4	19	ND		ND ND		ND	<0.0189	<0.0192	ND	ND ND	ND		ND		ND
1,∠,4-1 rimethylbenzene	mg/kg	220	220	220	ND		ND		2.4	<0.00756	<0.00767 J	ND	ND	ND		ND		ND
1,3,5-1 rimethylbenzene	mg/kg	180	180	180	ND	I ND	ND		0.852	<0.00756	<0.00767	ND	ND	ND		ND	I ND	ND

Eddy-Kirby Parcels, Clevela	dy-Kirby Parcels, Cleveland, Cuyahoga County, Ohio						IA-01A							IA-02				
Sample ID (Depth ¹)		A	Applicable Standard	s	HB-100 (6-8) *	B-105 (4-6) *	B-105 (6-8) *	B-106 (5-7) *	B-106 (3-5) *	P4-IA02-SB01 (4- 6)	Duplicate 1 (P4- IA02-SB01)	B-5 (8-10) *	IA-2-01 (0-2)*	IA-2-01 (2-4) *	IA-2-02 (0-4)	IA-2-02 (4-6) *	IA-2-02 (6-8) *	IA-2-03 (0-4) *
Collection Date		GDCS Residential	GDCS Commercial/	GDCS Construction	10/3/2007	12/11/2008	12/11/2008	12/11/2008	12/11/2008	6/14/2023	6/14/2023	3/28/2000	10/9/2008	10/9/2008	10/9/2008	10/9/2008	10/9/2008	10/9/2008
Parameter	Units ²	Land Use ³	Land Use 4	Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds - Vo)Cs												- -					
Vinyl chloride	mg/kg	1.3	49	280	ND	ND	ND	ND	ND	<0.00378	<0.00383	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	mg/kg	260	260	260	ND	ND	ND	ND	ND	<0.00982	<0.00997 J	ND	ND	ND	ND	0.02641	84.9	ND
virigric rng/kg 1.3 49 280 ND ND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																		
Bold and shaded numbers indicate a detected	d concentra	ation above a compariso	n standard. If exceeding m	nore than one standard, th														

*: Samples collected by HzW

ND: No Detections

Table 4A: Summary of VO	Cs in Soi	il Vahana County	Ohio			1			14.02				1 10.04	1 14 05		1	14.07	
Eddy-Kirby Parcels, Cleve	iand, Cu	yanoga County,	Onio		IA-02				IA-03		1	5.00	IA-04	IA-05	IA-06	 	IA-07	
Sample ID (Depth ¹)		A	Applicable Standard	ds	IA-2-03 (6-8) *	P4-IA03-SB01 (2 4)	2 P4-IA03-MW01 (0-2)	B-18 (8-10) *	B-19 (10-12) *	B-20 (0-2) *	B-21 (10-12) *	B-22 (8-10) * ⁶	P4-IA04-MW01 (2-4)	P4-IA05-SB01 (0 2)	P4-IA06-SB01 (4 6)	P4-IA07-MW01 (0-2)	B-03 (4-6) *	IA-7-01 (0-2) *
Collection Date		GDCS Residential	GDCS Commercial/ Industrial	GDCS Construction & Excavation	10/9/2008	6/14/2023	6/14/2023	5/25/2000	5/25/2000	5/25/2000	5/25/2000	5/25/2000	6/14/2023	6/19/2023	6/13/2023	6/14/2023	3/24/2000	11/13/2008
Parameter	Units ²	Land Use ³	Land Use ⁴	Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds -	VOCs												-	-	-	-		
Acetone	mg/kg	110,000	110,000	110,000	ND	<0.0711	0.137	ND	ND	ND	ND	ND	<0.0573	0.0736	<0.0769	0.0497 J	ND	ND
Acrylonitrile	mg/kg	6.1	30	62	NT	<0.0178	< 0.0169	NT	NT	NT	NT	NT	<0.0143	<0.0173	<0.0192	<0.0169	ND	ND
Benzene	mg/kg	28	130	1,200	ND	<0.00142	<0.00135	ND	ND	ND	ND	ND	<0.00115	<0.00138	<0.00154	<0.00135	ND	ND
Bromobenzene	mg/kg	NE	NE	NE	ND	<0.0178	< 0.0169	ND	ND	ND	ND	ND	< 0.0143	< 0.0173	< 0.0192	< 0.0169	ND	ND
Bromodichloromethane	mg/kg	<u> </u>	33	300	ND	<0.00356	<0.00338		ND	ND	ND		<0.00286	<0.00345	<0.00384	<0.00338		ND
Bromomethane	ma/ka	400	76	550	ND	<0.0350	<0.0338	ND	ND	ND	ND	ND	<0.0280	<0.0345	<0.0384	<0.0338		ND
n-Butvlbenzene	ma/ka	110 6	110 6	110 6	ND	< 0.0178	< 0.0169	ND	ND	ND	ND	ND	< 0.0143	< 0.0173	< 0.0192	< 0.0169	ND	ND
sec-Butylbenzene	mg/kg	140 ⁶	140 °	140 ⁶	ND	<0.0178	< 0.0169	ND	ND	ND	ND	0.00633	<0.0143	< 0.0173	<0.0192	< 0.0169	ND	ND
tert-Butylbenzene	mg/kg	180 ^e	180 °	180 ⁶	ND	<0.00711	<0.00677	ND	ND	ND	ND	ND	<0.00573	<0.00690	<0.00769	<0.00676	ND	ND
Carbon tetrachloride	mg/kg	16	74	460	ND	<0.00711	<0.00677	ND	ND	ND	ND	ND	<0.00573	<0.00690	<0.00769	<0.00676	ND	ND
Chlorobenzene	mg/kg	660	760	760	ND	<0.00356	<0.00338	ND	ND	ND	ND	ND	<0.00286	<0.00345	<0.00384	<0.00338	ND	ND
Chlorodibromomethane	mg/kg	130	800	800	NT	< 0.00356	<0.00338	NT	NT	NT	NT	NT	<0.00286	< 0.00345	<0.00384	<0.00338	NT	NT
Chloroethane	mg/kg	2,100	2,100	2,100	ND	<0.00711	<0.00677	ND ND	ND	ND	ND	ND	<0.00573	< 0.00690	<0.00769	< 0.00676	ND	ND
	mg/kg	7.9	35	320		<0.00356	<0.00338		ND ND				<0.00286	<0.00345	<0.00384	<0.00338		
2-Chlorotoluene	ma/ka	NF	NF	NF	ND	<0.0178	<0.0109	ND	ND	ND	ND	ND	<0.0143	<0.0173	<0.0192	<0.0109	ND	ND
4-Chlorotoluene	mg/kg	NE	NE	NE	ND	< 0.00711	< 0.00677	ND	ND	ND	ND	ND	< 0.00573	< 0.00690	< 0.00769	< 0.00676	ND	ND
1,2-Dibromo-3-Chloropropane	mg/kg	0.37	1.6	15	ND	<0.0356	< 0.0338	ND	ND	ND	ND	ND	<0.0286	<0.0345	<0.0384	<0.0338	ND	ND
1,2-Dibromoethane (EDB)	mg/kg	0.89	4.2	39	ND	<0.00356	<0.00338	ND	ND	ND	ND	ND	<0.00286	<0.00345	< 0.00384	<0.00338	ND	ND
Dibromomethane	mg/kg	59	250 ⁶	870 ⁶	ND	<0.00711	<0.00677	ND	ND	ND	ND	ND	<0.00573	<0.00690	<0.00769	<0.00676	ND	ND
1,2-Dichlorobenzene	mg/kg	380	380	380	ND	0.00176 J	< 0.00677	ND	ND	ND	ND	ND	< 0.00573	< 0.00690	< 0.00769	< 0.00676	ND	ND
1,3-Dichlorobenzene	mg/kg	<u>NE</u>	NE	NE	ND	<0.00711	<0.00677	ND ND	ND	ND	ND	ND	< 0.00573	< 0.00690	<0.00769	<0.00676	ND	ND
1,4-Dichlorobenzene Dichlorodifluoromethane	mg/kg mg/kg	850	<u>290</u> 850	2,000		<0.00211 J			ND				<0.00573	<0.00690	<0.00769	<0.00076		
1.1-Dichloroethane	ma/ka	89	390	1.700	ND	<0.00356	<0.00338	ND	ND	ND	ND	ND	<0.00286	<0.00345	<0.00304 33	<0.00338	ND	ND
1,2-Dichloroethane (EDC)	mg/kg	11	52	480	ND	< 0.00356	< 0.00338	ND	ND	ND	ND	ND	< 0.00286	< 0.00345	< 0.00384	<0.00338	ND	ND
1,1-Dichloroethene	mg/kg	360	1,200	360	ND	<0.00356	<0.00338	ND	ND	ND	ND	ND	<0.00286	<0.00345	<0.00384	<0.00338	ND	ND
cis-1,2-Dichloroethene	mg/kg	310	2,400	2,400	ND	< 0.00356	< 0.00338	ND	ND	ND	8.18	ND	< 0.00286	< 0.00345	< 0.00384	< 0.00338	ND	ND
trans-1,2-Dichloroethene	mg/kg	1,900	1,900	1,900	ND	<0.00711	< 0.00677	ND	ND ND	ND	0.986	ND	< 0.00573	<0.00690	<0.00769	<0.00676	ND ND	ND
1,2-Dichloropropene	mg/kg		NE	NE		<0.00711	<0.00077		ND	ND	ND		<0.00373	<0.00090	<0.00709	<0.00070		ND
1 3-Dichloropropane	ma/ka	1 500	1 500	1 500	ND	<0.00330	<0.00530	ND	ND	ND	ND	ND	<0.00200	<0.00545	<0.00304	<0.00550	ND	ND
cis-1,3-Dichloropropene	mg/kg	NE	NE	NE	ND	< 0.00356	< 0.00338	ND	ND	ND	ND	ND	< 0.00286	< 0.00345	< 0.00384	< 0.00338	ND	ND
trans-1,3-Dichloropropene	mg/kg	NE	NE	NE	ND	<0.00711	<0.00677	ND	ND	ND	ND	ND	<0.00573	<0.00690	<0.00769	<0.00676	ND	ND
2,2-Dichloropropane	mg/kg	NE	NE	NE	ND	<0.00356	<0.00338	ND	ND	ND	ND	ND	<0.00286	<0.00345	<0.00384	<0.00338	ND	ND
Ethylbenzene	mg/kg	140	480	480	ND	0.00236 B J	0.00115 B J	0.00708	ND	ND	ND	ND	< 0.00286	< 0.00345	<0.00384	<0.00338	ND	ND
Hexachloro-1,3-butadiene	mg/kg	17	17	17	ND	<0.0356	<0.0338	ND	ND	ND	ND	ND	< 0.0286	< 0.0345	< 0.0384	< 0.0338	ND	ND
n-Hexane	mg/kg	140	140	140	NI	0.00327 B J	<0.00677	ND	ND	ND	ND	ND	<0.00573	<0.00690	<0.00769	<0.00676	ND	ND
	mg/kg	160	270	270		0.00134 J	<0.00338 0.00742						<0.00280 <0.00573			<0.00338 <0.00676		
2-Butanone (MEK)	ma/ka	28,000	28,000	28.000	ND	<0.142	<0.135		ND	ND	ND	ND	<0.115	<0.138	<0.00703	<0.00070	ND	ND
Methylene Chloride	ma/ka	740	3.300	3.300	ND	<0.0356	< 0.0338	ND	ND	ND	ND	ND	< 0.0286	< 0.0345	< 0.0384	<0.0338	ND	ND
4-Methyl-2-pentanone (MIBK)	ma/ka	3.400	3,400	3.400	ND	< 0.0356	< 0.0338	ND	ND	ND	ND	ND	< 0.0286	< 0.0345	< 0.0384	< 0.0338	ND	ND
Methyl tert-butyl ether (MTBE)	mg/kg	1,100	5,400	8,900	ND	<0.00142	<0.00135	ND	ND	ND	ND	ND	<0.00115	<0.00138	<0.00154	<0.00135	ND	ND
Naphthalene	mg/kg	96	420	560	ND	1.89	0.158	0.126	0.025	ND	ND	ND	0.0529	0.0549 J4	<0.0192	0.0149 J	ND	1.72
n-Propylbenzene	mg/kg	260 ^e	260 °	260 ⁶	ND	0.00165 J	<0.00677	ND	ND	ND	ND	0.00686	<0.00573	<0.00690	<0.00769	<0.00676	ND	ND
Styrene	mg/kg	870	870	870	ND	<0.0178	0.00125 B J	ND	ND	ND	ND	ND	0.00102 B J	<0.0173	0.00115 B J	0.0012 B J	ND	ND
1,1,1,2-Tetrachloroethane	mg/kg	49	230	680	ND	<0.00356	<0.00338	ND ND	ND	ND	ND	ND ND	<0.00286	<0.00345	<0.00384	<0.00338	ND	ND
Tetrachloroethene (PCE)	mg/kg	15	170	<u> </u>	1 99	<0.00356	<0.00338		ND				<0.00200	<0.00345	<0.00384	<0.00338		
Toluene	ma/ka	820	820	820	ND	<0.00711	< 0.00677	0.00522	ND	ND	ND	0.00542	< 0.00573	<0.00690	< 0.00769	< 0.00676	ND	ND
1.2.3-Trichlorobenzene	ma/ka	NE	NE	NE	ND	< 0.0178	< 0.0169	ND	ND	ND	ND	ND	< 0.0143	< 0.0173	< 0.0192	< 0.0169	ND	ND
1,2,4-Trichlorobenzene	mg/kg	140	400	400	ND	<0.0178	< 0.0169	ND	ND	ND	ND	ND	< 0.0143	<0.0173	< 0.0192	<0.0169	ND	ND
1,1,1-Trichloroethane	mg/kg	640	640	640	ND	<0.00356	<0.00338	ND	ND	ND	ND	ND	<0.00286	<0.00345	< 0.00384	<0.00338	ND	ND
1,1,2-Trichloroethane	mg/kg	28	130	1,200	ND	< 0.00356	<0.00338	ND ND	ND	ND	ND	ND	< 0.00286	< 0.00345	<0.00384	< 0.00338	ND	ND
I richloroethene (ICE)	mg/kg	10	48	17	9.95	0.000881 J			ND		ND			<0.00138	<0.00154	<0.00135		ND
1 2 3-Trichloropropane	ma/ka	0.1	4.4	1,200		<0.00306 J3	<0.00338 J3						<0.00280 J <0.0143	<0.00345	<0.00304 J3	<0.00338 J3 <0.0169		
1.2.4-Trimethylbenzene	ma/ka	220	220	220	ND	0.0309	0.00582 J	0,0367	0.00984	ND	ND	0.0262	<0.00573	0.00711	<0.00769	<0.00676	4,75	ND
1,3,5-Trimethylbenzene	mg/kg	180	180	180	ND	0.0113	<0.00677	ND	ND	ND	ND	0.00939	< 0.00573	<0.00690	<0.00769	< 0.00676	2.92	ND

Eddy-Kirby Parcels, Cleve	Idy-Kirby Parcels, Cleveland, Cuyahoga County, Ohio								IA-03				IA-04	IA-05	IA-06		IA-07	
Sample ID (Depth ¹)		A	Applicable Standard	ds	IA-2-03 (6-8) *	P4-IA03-SB01 (2 4)	2- P4-IA03-MW01 (0-2)	B-18 (8-10) *	B-19 (10-12) *	B-20 (0-2) *	B-21 (10-12) *	B-22 (8-10) * ⁶	P4-IA04-MW01 (2-4)	P4-IA05-SB01 (0- 2)	P4-IA06-SB01 (4 6)	• P4-IA07-MW01 (0-2)	B-03 (4-6) *	IA-7-01 (0-2) *
Collection Date	ollection Date GDCS Residential GDCS Commercial/ Land Use ³ GDCS Commercial/ Industrial & Excavation			GDCS Construction	10/9/2008	6/14/2023	6/14/2023	5/25/2000	5/25/2000	5/25/2000	5/25/2000	5/25/2000	6/14/2023	6/19/2023	6/13/2023	6/14/2023	3/24/2000	11/13/2008
Parameter	Units ²	Land Use ³ Land Use ⁴ Activities		Activities 5	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds -	VOCs																	
Vinyl chloride	mg/kg	1.3	49	280	ND	<0.00356	<0.00338	0.0109		ND	ND	ND	<0.00286	<0.00345	< 0.00384	<0.00338	ND	ND
Xylenes, Total	mg/kg	260	260	260	ND	0.0313	0.0069	0.0452	0.0109	ND	ND	0.02128	<0.00745	<0.00897	< 0.00999	<0.00878	ND	ND
Notes																		

1. FT - Feet below grade

2. mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Residential Land Use.

4. Ohio VAP GDCS Commercial/Industrial Land Use.

5. Ohio VAP GDCS Construction/Excavation Activities.

6. Supplemental standards from the Ohio VAP CIDARS

NE: No standard established by applicable agency

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard. If exceeding more than one standard, th

*: Samples collected by HzW

ND: No Detections

Eddy-Kirby Parcels, Cleveland, Cuyahoga County, Ohio						IA-07			IA-08		1			IA	-09			
Sample ID (Depth ¹)	,	, <u>, , , , , , , , , , , , , , , , , , </u>	Applicable Standar	ds	IA-7-01 (2-4) *	IA-7-02 (0-2) *	IA-7-02 (2-4) *	B-15 (0-2) *	IA-8-01 (0-2) *	IA-8-02 (0-2)*	P4-IA09-SB01 (0 2)	B-23 (8-10) *	B-24 (8-10) *	B-25 (0-2) *	B-26 (4-6) *	B-27 (4-6) *	B-28 (2-4) *	B-45 (0-2) *
Collection Date		GDCS Residential	GDCS Commercial	GDCS Construction	11/13/2008	11/13/2008	11/13/2008	3/28/2000	11/13/2008	11/13/2008	6/13/2023	5/24/2000	5/24/2000	5/24/2000	5/24/2000	5/24/2000	5/24/2000	5/30/2001
Parameter	Units ²	Land Use ³	Land Use ⁴	Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds -	VOCs							-				•			•		•	
Acetone	mg/kg	110,000	110,000	110,000	ND	ND	ND	ND	ND	ND	0.0713	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	mg/kg	6.1	30	62	ND	ND	ND	ND	ND	ND	<0.0162	ND	ND	ND	ND	ND	ND	ND
Benzene	mg/kg	28	130	1,200	ND	ND	ND	ND	ND	ND	<0.00130	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	mg/kg	NE	NE	NE	ND	ND	ND	ND	ND	ND	< 0.0162	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	mg/kg	7.3	33	300	ND	ND ND	ND	ND	ND	ND	<0.00325	ND	ND	ND	ND	ND	ND ND	ND
Bromomethane	mg/kg	400	<u> </u>	550							<0.0325		ND					
n-Butylbenzene	ma/ka	110 6	110 6	110 6	ND	ND	ND	ND	ND	ND	<0.0162	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	ma/ka	140 6	140 6	140 6	ND	ND	ND	ND	ND	ND	< 0.0162	ND	ND	4.56	ND	ND	ND	ND
tert-Butylbenzene	ma/ka	180 6	180 6	180 6	ND	ND	ND	ND	ND	ND	< 0.00649	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	mg/kg	16	74	460	ND	ND	ND	ND	ND	ND	< 0.00649	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	mg/kg	660	760	760	ND	ND	ND	ND	ND	ND	<0.00325	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane	mg/kg	130	800	800	NT	NT	ND	ND	ND	ND	< 0.00325	ND	ND	ND	ND	ND	ND	ND
Chloroethane	mg/kg	2,100	2,100	2,100	ND	ND NE	ND	ND	ND	ND	< 0.00649	ND	ND	ND	ND	ND	ND	ND
Chloroform	mg/kg	7.9	35	320	ND	ND ND	ND	ND ND	ND	ND	< 0.00325	ND ND		ND ND		ND		ND
	mg/kg	280	1,200	1,300							<0.0162 <0.00325							
4-Chlorotoluene	mg/kg	NE	NE	NE		ND			ND	ND	<0.00323	ND	ND	ND	ND	ND		ND
1.2-Dibromo-3-Chloropropane	ma/ka	0.37	1.6	15	ND	ND	ND	ND	ND A	ND	< 0.0325	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane (EDB)	mg/kg	0.89	4.2	39	ND	ND	ND	ND	ND	ND	< 0.00325	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	mg/kg	59	250 ⁶	870 ⁶	ND	ND	ND	ND	ND	ND	<0.00649	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	mg/kg	380	380	380	ND	ND	ND	ND	ND	ND	<0.00649	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	mg/kg	NE	NE	NE	ND	ND	ND	ND	ND	ND	<0.00649	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	mg/kg	65	290	2,600	ND	ND	ND ND	ND		ND	< 0.00649	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	mg/kg	850	850	850	ND ND	ND ND		ND ND	ND	ND ND	<0.00325 J3	ND 0.0148	ND 0.0707	ND ND	ND ND	ND 1 82		ND ND
1,1-Dichloroethane (EDC)	mg/kg	<u> </u>	52	480		ND		ND	ND	ND	<0.00325	0.0140 ND	ND	ND		ND		ND
1.1-Dichloroethene	ma/ka	360	1.200	360	ND	ND	ND	ND	ND	ND	<0.00325	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	mg/kg	310	2,400	2,400	ND	ND	ND	ND	ND	ND	<0.00325	ND	ND	ND	ND	29.9	ND	ND
trans-1,2-Dichloroethene	mg/kg	1,900	1,900	1,900	ND	ND	ND	ND	ND	ND	<0.00649	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	mg/kg	39	170	180	ND	ND	ND	ND	ND	ND	<0.00649	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	mg/kg	NE 1,500	NE	NE 1.500	ND	ND	ND	ND	ND	ND	< 0.00325	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	mg/kg	1,500	1,500	1,500					ND		<0.00649			ND ND		ND		
trans-1 3-Dichloropropene	mg/kg	NE	NE	NE		ND			ND	ND	<0.00325		ND			ND		ND
2.2-Dichloropropane	ma/ka	NE	NE	NE	ND	ND	ND	ND	ND	ND	< 0.00325	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ma/ka	140	480	480	ND	ND	ND	ND	ND	ND	0.00571 B	0.00602	ND	ND	4.010	2.16	2.96	ND
Hexachloro-1,3-butadiene	mg/kg	17	17	17	ND	ND	ND	ND	ND	ND	< 0.0325	ND	ND	ND	ND	ND	ND	ND
n-Hexane	mg/kg	140	140	140	ND	ND	ND	ND	ND	ND	<0.00649	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	mg/kg	270	270	270	ND	ND	ND	ND	ND	ND	< 0.00325	ND	ND	ND	453	ND	1.27	ND
p-Isopropyltoluene	mg/kg	160	260 ⁶	260 ⁶	ND	ND	ND	ND	ND	ND	<0.00649	ND	ND	23.7	ND	ND	ND	ND
2-Butanone (MEK)	mg/kg	28,000	28,000	28,000	ND	ND	ND	ND	ND	ND	<0.130	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	mg/kg	740	3,300	3,300	ND	ND	ND	ND	ND	ND	<0.0325	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone (MIBK)	mg/kg	3,400	3,400	3,400	ND	ND ND	ND	ND ND	ND	ND	<0.0325		ND ND	ND ND		ND		ND
Naphthalena	mg/kg	1,100	5,400	8,900							<0.00130 0.0174							
n Bropylbonzono	mg/kg	90 260 §	420	260.6	0.145	0.0205				ND	0.0171		ND	1.02 ND			0.073	
Styrene	ma/ka	870	870	870							0.00156 J							
1.1.1.2-Tetrachloroethane	ma/ka	49	230	680	ND	ND	ND	ND	ND	ND	< 0.00325	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	mg/kg	15	71	670	ND	ND	ND	ND	ND	ND	<0.00325	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene (PCE)	mg/kg	170	170	170	0.0194	0.00714	ND	ND	ND	ND	< 0.00325	ND	ND	8.13	ND	ND	ND	0.00522
Toluene	mg/kg	820	820	820	ND	ND	ND	ND	ND	ND	0.00283 J	0.00554	ND	ND	204	ND	ND	ND
1,2,3-Trichlorobenzene	mg/kg	NE	NE	NE	ND	ND	ND	ND	ND	ND	< 0.0162	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	mg/kg	140	400	400	ND	ND ND	ND	ND	ND	ND	< 0.0162		ND ND	ND		ND		ND
1,1,1-1 richloroethane	mg/kg	640	640	640					ND		<0.00325			1.94		337		ND ND
Trichloroethene (TCF)	ma/ka	10	48	1,200				0.0128			<0.00325					16 1		
Trichlorofluoromethane	ma/ka	1,200	1,200	1,200	ND	ND	ND	ND	ND	ND	<0.00325 J3	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	mg/kg	0.1	4.4	19	ND	ND	ND	ND	ND	ND	< 0.0162	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	mg/kg	220	220	220	ND	ND	ND	ND	ND	ND	0.00439 J	ND	ND	26.3	ND	2.06	3.26	ND
1,3,5-Trimethylbenzene	mg/kg	180	180	180	ND	ND	ND	ND	ND	ND	< 0.00649	ND	ND	31.6	ND	1.13	1.56	ND

Eddy-Kirby Parcels, Cleveland	Idy-Kirby Parcels, Cleveland, Cuyahoga County, Ohio							IA-08					IA	-09			
Sample ID (Depth ¹)		Applicable Standar	ds	IA-7-01 (2-4) *	IA-7-02 (0-2) *	IA-7-02 (2-4) *	B-15 (0-2) *	IA-8-01 (0-2) *	IA-8-02 (0-2)*	P4-IA09-SB01 (0- 2)	B-23 (8-10) *	B-24 (8-10) *	B-25 (0-2) *	B-26 (4-6) *	B-27 (4-6) *	B-28 (2-4) *	B-45 (0-2) *
Collection Date	GDCS Residenti	GDCS Commercial	GDCS Construction	11/13/2008	11/13/2008	11/13/2008	3/28/2000	11/13/2008	11/13/2008	6/13/2023	5/24/2000	5/24/2000	5/24/2000	5/24/2000	5/24/2000	5/24/2000	5/30/2001
Parameter Ur	hits ² Land Use ³	Land Use ⁴	Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds - VOC	s																
Vinyl chloride m	g/kg <u>1.3</u>	49	280	ND	ND	ND	ND	ND	ND	<0.00325	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total m	g/kg 260	260	260	ND	ND	ND	ND	ND	ND	0.0325	0.02596	ND	ND	20,260	0.00885	87.50	ND
Notes 1. FT - Feet below grade 2. mg/kg = Milligrams per kilogram - parts per m 3. Ohio VAP GDCS Residential Land Use. 4. Ohio VAP GDCS Commercial/Industrial Land 5. Ohio VAP GDCS Construction/Excavation Av 6. Supplemental standards from the Ohio VAP G NE: No standard established by applicable ager	tillion (ppm) I Use. ctivities. CIDARS Incy							P .									

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard. If exceeding more than one standard, th

*: Samples collected by HzW

ND: No Detections

<table-container> Image and the set of the set of</table-container>	Eddy-Kirby Parcels, Cleve				IA	-09					IA	·10		IA	-11				
<table-container> bit bit<</table-container>	Sample ID (Depth ¹)		4	Applicable Standard	ls	B-46 (2-4) *	IA-9-B-01 (0-2) *	IA-9-B-01 (4-6) *	IA-9-B-02 (0-2) *	IA-9-B-02 (2-4) *	IA-9-B-03 (4-6) *	IA-9-B-04 (0-2) *	IA-9-B-04- (6-8) *	B-29 (2-4) *	IA-10-B-01 (0-2) *	IA-10-B-01 (6-8)	B-IA-10-02 (0-2) *	P4-IA11-MW01 (0-2)	B-08 (8-10) *
braneUnitUnitNumValoVa	Collection Date		GDCS Residential	GDCS Commercial/	GDCS Construction	5/30/2001	6/16/2004	6/16/2004	6/16/2004	6/16/2004	6/16/2024	6/16/2004	6/16/2004	5/25/2000	6/16/2004	6/16/2004	6/11/2004	6/13/2023	3/24/2000
the serie se	Parameter	Units ²	Land Use ³	Land Use 4	Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Schele mod 193.00 <td>Volatile Organic Compounds -</td> <td>VOCs</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>	Volatile Organic Compounds -	VOCs							•										
mprofile	Acetone	mg/kg	110,000	110,000	110,000	ND	ND	ND	ND	ND	ND	ND	ND	0.581	ND	ND	ND	<0.0694	ND
Sach No. No. <td>Acrylonitrile</td> <td>mg/kg</td> <td>6.1</td> <td>30</td> <td>62</td> <td>ND</td> <td><0.0174</td> <td>ND</td>	Acrylonitrile	mg/kg	6.1	30	62	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0174	ND
Intersent No. N	Benzene	mg/kg	28	130	1,200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00111 J	ND
bind bind <th< th=""><td>Bromobenzene</td><td>mg/kg</td><td>NE</td><td>NE</td><td>NE</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><0.0174</td><td>ND</td></th<>	Bromobenzene	mg/kg	NE	NE	NE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0174	ND
barrier bb/ barrier <	Bromodichloromethane	mg/kg	7.3	33	300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00347	ND
SakeSerke Imple	Bromotorm	mg/kg	460	910	910	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0347	ND
bit bit <td>n Butylbenzene</td> <td>mg/kg</td> <td>110 6</td> <td>110 6</td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td> <td></td> <td></td> <td></td> <td>ND</td> <td></td> <td><0.0174</td> <td></td>	n Butylbenzene	mg/kg	110 6	110 6	<u> </u>							ND				ND		<0.0174	
article Anomene right No	sec Butylbenzene	mg/kg	140 6	110	140 6		ND				ND	ND	ND		ND	ND	ND	<0.0174	
Schenwertshilte Opt No	tert Butylbenzene	mg/kg	180 6	140	180 6	ND	ND				ND	ND			ND	ND	ND	<0.00604	
Sindeport No. N	Carbon tetrachloride	mg/kg	16	74	460	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00034	ND
District District Bit No	Chlorobenzene	ma/ka	660	760	760	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.00347	ND
Discretante ray 1.00 2.00 4.00 N0	Chlorodibromomethane	mg/kg	130	800	800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00347	ND
backbor mp1 72 <th72< th=""> 72 72 <t< th=""><td>Chloroethane</td><td>mg/kg</td><td>2,100</td><td>2,100</td><td>2,100</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><0.00694</td><td>ND</td></t<></th72<>	Chloroethane	mg/kg	2,100	2,100	2,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00694	ND
ether rp3 280 6.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.01 0.0 0.	Chloroform	mg/kg	7.9	35	320	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00347	ND
Constructure Rob Rob Rob Rob <th< th=""><td>Chloromethane</td><td>mg/kg</td><td>280</td><td>1,200</td><td>1,300</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><0.0174</td><td>ND</td></th<>	Chloromethane	mg/kg	280	1,200	1,300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0174	ND
Construct No No <	2-Chlorotoluene	mg/kg	NE	NE	NE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00347	ND
122 122 123 <td>4-Chiorololuene</td> <td>mg/kg</td> <td></td> <td></td> <td><u>NE</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td> <td></td> <td></td> <td></td> <td>ND</td> <td></td> <td><0.00094</td> <td></td>	4-Chiorololuene	mg/kg			<u>NE</u>							ND				ND		<0.00094	
Barbonenthame mpkg 96 960 970 ND ND ND	1.2-Dibromoethane (EDB)	ma/ka	0.37	4.2	39	ND	ND				ND	ND	ND	ND	ND	ND	ND	<0.0347	ND
12.000000000000000000000000000000000000	Dibromomethane	ma/ka	59	250 ⁶	870 6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00547	ND
32-0700000000000000000000000000000000000	1.2-Dichlorobenzene	ma/ka	380	380	380	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.00694	ND
(4.00) (4.00) (8.0) <	1,3-Dichlorobenzene	mg/kg	NE	NE	NE	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	< 0.00694	ND
Determinant mplo 600 800 800 ND	1,4-Dichlorobenzene	mg/kg	65	290	2,600	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00694	ND
1) 1)<	Dichlorodifluoromethane	mg/kg	850	850	850	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00347 J3	ND
Lab Lab Lab Lab Mode No <	1,1-Dichloroethane	mg/kg	89	390	1,700	ND	0.00523	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00347	ND
Dial Location mark model 1930 Deck of the second secon	1,2-Dichloroethane (EDC)	mg/kg	11	52	480							ND				ND	ND	<0.00347	
market market jesso hB ND	cis-1 2-Dichloroethene	ma/ka	310	2 400	2 400	ND	0.026	0 729			ND	ND	ND	ND	ND	ND	1 15	0.00347	ND
12-Dickingrogene mg/s 3.3 9.70 M60 ND ND<	trans-1,2-Dichloroethene	mg/kg	1,900	1,900	1,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00185 J	ND
1.10/chorgongene mg/s M/E M/E <	1,2-Dichloropropane	mg/kg	39	170	180	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00694	ND
13-Dictorgraphen mg/kg 1.560 7.500 ND	1,1-Dichloropropene	mg/kg	NE	NE	NE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00347	ND
bits Met Met ND ND <th< th=""><td>1,3-Dichloropropane</td><td>mg/kg</td><td>1,500</td><td>1,500</td><td>1,500</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>< 0.00694</td><td>ND</td></th<>	1,3-Dichloropropane	mg/kg	1,500	1,500	1,500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.00694	ND
matrix matrix<	cis-1,3-Dichloropropene	mg/kg	NE	NE	NE	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00347	ND
Bit Mark 1-8 1-9 1-9 1-0 ND	2.2 Dichloropropage	mg/kg	NE	NE								ND				ND		<0.00094	
Implement Implement <t< th=""><td>2,2-Dichioropropane</td><td>mg/kg</td><td>140</td><td>180</td><td>180</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td><0.00347</td><td></td></t<>	2,2-Dichioropropane	mg/kg	140	180	180							ND			ND	ND	ND	<0.00347	
n=heare mg/kg 140 140 ND	Hexachloro-1 3-butadiene	ma/ka	17	17	17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0347	ND
sportportport mg/hg 270 270 270 ND ND <td>n-Hexane</td> <td>ma/ka</td> <td>140</td> <td>140</td> <td>140</td> <td>ND</td> <td>0.00546 B J</td> <td>ND</td>	n-Hexane	ma/ka	140	140	140	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00546 B J	ND
p-log-portividuene mg/kg 160 260* 260* ND ND <th< th=""><td>Isopropylbenzene</td><td>ma/ka</td><td>270</td><td>270</td><td>270</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.00407</td><td>ND</td></th<>	Isopropylbenzene	ma/ka	270	270	270	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00407	ND
2+Butance (MEK) mg/kg 28.000 28.000 ND ND <th< th=""><td>p-Isopropyltoluene</td><td>mg/kg</td><td>160</td><td>260 °</td><td>260 6</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><0.00694</td><td>ND</td></th<>	p-Isopropyltoluene	mg/kg	160	260 °	260 6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00694	ND
Methylers Chloride mg/kg 740 3.300 ND ND 0.6655 ND 0.0337 ND ND 0.0091 ND 0.0104 ND 1.34 0.0111 ND 4Methyl-2-pentanone (MBK) mg/kg 3.400 3.400 ND	2-Butanone (MEK)	mg/kg	28,000	28,000	28,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.139	ND
4Methyl-2-pentanone (MIBK) mg/kg 3.400 3.400 3.400 ND ND <td>Methylene Chloride</td> <td>mg/kg</td> <td>740</td> <td>3,300</td> <td>3,300</td> <td>ND</td> <td>ND</td> <td>0.665</td> <td>ND</td> <td>0.0357</td> <td>ND</td> <td>ND</td> <td>0.00901</td> <td>ND</td> <td>0.0104</td> <td>ND</td> <td>1.34</td> <td>0.0111</td> <td>ND</td>	Methylene Chloride	mg/kg	740	3,300	3,300	ND	ND	0.665	ND	0.0357	ND	ND	0.00901	ND	0.0104	ND	1.34	0.0111	ND
Methy leth-dury lether (MTBE) mg/kg 1.100 5.400 8.900 ND ND </th <td>4-Methyl-2-pentanone (MIBK)</td> <td>mg/kg</td> <td>3,400</td> <td>3,400</td> <td>3,400</td> <td>ND</td> <td><0.0347</td> <td>ND</td>	4-Methyl-2-pentanone (MIBK)	mg/kg	3,400	3,400	3,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0347	ND
Naphtalene mg/kg 96 420 560 ND	Methyl tert-butyl ether (MTBE)	mg/kg	1,100	5,400	8,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00139	ND
h-Propridenzene mg/kg 260 ° 260 ° 260 ° ND ND <t< th=""><td>Naphthalene</td><td>mg/kg</td><td>96</td><td>420</td><td>560</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.0406</td><td>ND</td></t<>	Naphthalene	mg/kg	96	420	560	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0406	ND
Shyrene mg/kg 870 870 ND	n-Propylbenzene	mg/kg	260 ⁶	260 ⁶	260 6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00511	ND
If 1,2-1=trachnoredmane Ing/kg 4-9 2.30 660 ND	Styrene	mg/kg	870	870	870	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00139	ND
Index forces Index forces<	1,1,2-Tetrachloroethane	mg/kg	49	230	670													<0.00347	
Toluene mg/kg 820 820 820 820 ND	Tetrachloroethene (PCF)	ma/ka	170	170	170	0.0745	ND	ND	ND	ND	0.00911	ND	ND	ND	ND	ND	ND	< 0.00347	ND
ng/kg NE NE NE ND	Toluene	mg/kg	820	820	820	ND	0.00645	0.926	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00778	ND
1,2,4-Trichlorobenzenemg/kg140400400ND	1,2,3-Trichlorobenzene	mg/kg	NE	NE	NE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0174	ND
1,1,1-Trichloroethanemg/kg640640640NDNDNDNDNDNDNDNDNDNDND1,1,2-Trichloroethanemg/kg281301,200NDN	1,2,4-Trichlorobenzene	mg/kg	140	400	400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0174	ND
1,1,2-Trichloroethanemg/kg281301,200ND	1,1,1-Trichloroethane	mg/kg	640	640	640	ND	ND	ND	ND	ND	ND	0.0204	ND	ND	ND	ND	0.958	<0.00347	ND
Inchloroethene (ICE) mg/kg 10 48 17 ND	1,1,2-Trichloroethane	mg/kg	28	130	1,200	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.00347	ND
Indicidentiality Ingre 1,200	Tripploroflugromethers	mg/kg	10	48	17	ND	ND	ND		ND	ND	0.0076	ND	ND	ND	ND	20		ND
Instruction	1 2 3-Trichloropropage	ma/ka	0.1	1,200	1,200		0.0291 ND											<0.00347 J3 <0.0174	
1,3,5-Trimethylbenzene mg/kg 180 180 180 ND	1,2,4-Trimethylbenzene	ma/ka	220	220	220	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0242	ND
	1,3,5-Trimethylbenzene	mg/kg	180	180	180	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0066 J	ND

Eddy-Kirby Parcels, Cleve	ly-Kirby Parcels, Cleveland, Cuyahoga County, Ohio							IA	-09					IA	10		IA-	11
Sample ID (Depth ¹)		A	pplicable Standard	ls	B-46 (2-4) *	IA-9-B-01 (0-2) *	IA-9-B-01 (4-6) *	IA-9-B-02 (0-2) *	IA-9-B-02 (2-4) *	IA-9-B-03 (4-6) *	IA-9-B-04 (0-2) *	IA-9-B-04- (6-8) *	B-29 (2-4) *	IA-10-B-01 (0-2) *	IA-10-B-01 (6-8)	B-IA-10-02 (0-2) *	P4-IA11-MW01 (0-2)	B-08 (8-10) *
Collection Date		GDCS Residential	GDCS Commercial/	GDCS Construction	5/30/2001	6/16/2004	6/16/2004	6/16/2004	6/16/2004	6/16/2024	6/16/2004	6/16/2004	5/25/2000	6/16/2004	6/16/2004	6/11/2004	6/13/2023	3/24/2000
Parameter	Units ²	Land Use ³	Land Use 4	Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds -	VOCs					-		•										
Vinyl chloride	mg/kg	1.3	49	280	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00347	ND
Xylenes, Total	mg/kg	260	260	260	ND	ND	0.866	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0375	ND
Notes 1. FT - Feet below grade 2. mg/kg = Milligrams per kilogram - parts 3. Ohio VAP GDCS Residential Land Use. 4. Ohio VAP GDCS Commercial/Industria 5. Ohio VAP GDCS Construction/Excavat 6. Supplemental standards from the Ohio V NE: No standard established by applicable Bold numbers indicate a concentration ab Bold and shaded numbers indicate a deter * : Samples collected by HzW	per million (pr I Land Use. ion Activities. VAP CIDARS agency ove laboratory cted concentra	om) y detection limits. ation above a compariso	n standard. If exceeding n	nore than one standard, th				<i>₿</i>										

ND: No Detections

Eddy-Kirby Parcels, Cleveland, Cuyahoga County, Ohio							IA	A-11						IA	-12			
Sample ID (Depth ¹)	-		Applicable Standard	ds	B-13 (4-5) *	B-14 (4-6) *	B-IA-11-01 (0-2) *	B-IA-11-01 (4-6) *	B-IA-11-02 (0-2) *	B-IA-11-02 (6-7) *	P4-IA12-SB01 (4 6)	B-06 (8-10) *	B-07 (8-10) *	B-09 (8-10) *	B-10 (4-6) *	B-11 (4-6) *	B-16 (8-10 *	B-IA-12-02 (0-2) *
Collection Date		GDCS Residential	GDCS Commercial/	GDCS Construction	3/28/2000	3/28/2000	6/11/2004	6/11/2004	6/11/2004	6/11/2004	6/13/2023	3/24/2000	3/24/2000	3/24/2000	3/28/2000	3/28/2000	3/29/2000	6/11/2004
Parameter	Units ²	Land Use ³	Land Use 4	Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds -	VOCs										-							
Acetone	mg/kg	110,000	110,000	110,000	ND	ND	NT	NT	NT	NT	0.129	ND	ND	ND	ND	ND	ND	NT
Acrylonitrile	mg/kg	6.1	30	62	ND	ND	NT	NT	NT	NT	<0.0174	ND	ND	ND	ND	ND	ND	NT
Benzene	mg/kg	28	130	1,200	ND	ND	NT	NT	NT	NT	<0.00140	ND	ND	ND	ND	ND	ND	NT
Bromobenzene	mg/kg	NE	NE	NE	ND	ND	NT	NT	NT	NT	<0.0174	ND	ND	ND	ND	ND	ND	NT
Bromodichloromethane	mg/kg	7.3	33	300	ND	ND	NT	NT	NT	NT	< 0.00349	ND	ND	ND	ND	ND	ND	NT
Bromotorm	mg/kg	460	910	910	ND	ND ND			NI		<0.0349	ND	ND	ND	ND	ND	ND ND	
Bromometnane	mg/kg	110.6	/0	<u> </u>	ND	ND					<0.0174	ND	ND	ND	ND	ND		
	mg/kg	140.6	140.6	140.6	ND	ND					0.0671	ND			ND	ND		
sec-Butylbenzene	mg/kg	140 °	140 °	140 °	ND	ND					0.0656	ND	ND	ND	ND	ND	ND	
Corbon totrophlarida	mg/kg	180 °	780 °	180 °	ND	ND					<0.00698	ND	ND	ND	ND	ND	ND	
	mg/kg	660	74	400							<0.00096							
Chlorodibromomethane	ma/ka	130	800	800	ND	ND	NT	NT	NT	NT	<0.00349	ND	ND	ND	ND	ND	ND	NT
Chloroethane	ma/ka	2,100	2,100	2,100	ND	ND	NT	NT	NT	NT	< 0.00698	ND	ND	ND	ND	ND	ND	NT
Chloroform	ma/ka	7.9	35	320	ND	ND	NT	NT	NT	NT	< 0.00349	ND	ND	ND	ND	ND	ND	NT
Chloromethane	mg/kg	280	1,200	1,300	ND	ND	NT	NT	NT	NT	<0.0174	ND	ND	ND	ND	ND	ND	NT
2-Chlorotoluene	mg/kg	NE	NE	NE	ND	ND	NT	NT	NT	NT	< 0.00349	ND	ND	ND	ND	ND	ND	NT
4-Chlorotoluene	mg/kg	NE	NE	NE	ND	ND	NT	NT	NT	NT	<0.00698	ND	ND	ND	ND	ND	ND	NT
1,2-Dibromo-3-Chloropropane	mg/kg	0.37	1.6	15	ND	ND	NT	NT	NT	NT	<0.0349	ND	ND	ND	ND	ND	ND	NT
1,2-Dibromoethane (EDB)	mg/kg	0.89	4.2	39	ND	ND	NT	NT	NT	NT	<0.00349	ND	ND	ND	ND	ND	ND	NT
Dibromomethane	mg/kg	59	250 °	870 ⁶	ND	ND	NT	NT	NT	NT	<0.00698	ND	ND	ND	ND	ND	ND	NT
1,2-Dichlorobenzene	mg/kg	380	380	380	ND	ND	NT	NT	NT	NT	0.00506 J	ND	ND	ND	ND	ND	ND	NT
1,3-Dichlorobenzene	mg/kg	<u>NE</u>	NE	NE	ND	ND	NT	NT	NT	NT	<0.00698	ND	ND	ND	ND	ND	ND	NT
1,4-Dichlorobenzene	mg/kg	65	290	2,600	ND	ND ND			NI		0.00146 J	ND	ND ND	ND	ND	ND	ND ND	
1 1 Dichloroothana	mg/kg	800	850	1 700	ND				NT		<0.00349 J3	ND			ND			
1,1-Dichloroethane (EDC)	ma/ka	11	52	480	ND		NT	NT	NT	NT	<0.00349			ND		ND		NT
1 1-Dichloroethene	ma/ka	360	1 200	360	ND	ND	NT	I NT	NT	NT	<0.00349	ND	ND	ND	ND	ND	ND	NT
cis-1,2-Dichloroethene	mg/kg	310	2,400	2,400	ND	ND	NT	NT	NT	NT	0.388	ND	ND	ND	ND	ND	ND	NT
trans-1,2-Dichloroethene	mg/kg	1,900	1,900	1,900	ND	ND	NT	NT	NT	NT	<0.00698	ND	ND	ND	ND	ND	ND	NT
1,2-Dichloropropane	mg/kg	39	170	180	ND	ND	NT	NT	NT	NT	<0.00698	ND	ND	ND	ND	ND	ND	NT
1,1-Dichloropropene	mg/kg	NE	NE	NE	ND	ND	NT	NT	NT	NT	<0.00349	ND	ND	ND	ND	ND	ND	NT
1,3-Dichloropropane	mg/kg	1,500	1,500	1,500	ND	ND	NT	NT	NT	NT	<0.00698	ND	ND	ND	ND	ND	ND	NT
cis-1,3-Dichloropropene	mg/kg	NE	NE	NE	ND	ND	NT	NT	NT	NT	< 0.00349	ND	ND	ND	ND	ND	ND	NT
trans-1,3-Dichloropropene	mg/kg	<u>NE</u>	NE	NE	ND	ND ND	NI		NI		<0.00698	ND	ND	ND	ND	ND	ND ND	NI
2,2-Dichloropropane	mg/kg	NE	NE	NE	ND	ND	NI		NI		<0.00349	ND	ND	ND	ND	ND	ND	NI
Ethylbenzene	mg/kg	140	480	480	ND	ND ND					0.0522	ND	ND	ND	ND	0.693	ND ND	
n Hexane	mg/kg	140	140	110	ND						<0.0449					ND		
Isopropylbenzene	mg/kg	270	270	270	ND		NT		NT		<0.00090 0.0137	ND			ND	ND		NT
	mg/kg	160	270	270					NT		0.0137							
2-Butanone (MEK)	ma/ka	28,000	28.000	28,000	ND		NT	NT	NT	NT	<0.120					ND		NT
	ma/ka	740	3 300	3 300	ND		NT	NT	NT		<0.140							NT
4-Methyl-2-pentanone (MIRK)	ma/ka	3 400	3 400	3 400	ND		NT	NT	NT		<0.0349							NT
Methyl tert-butyl ether (MTBF)	ma/ka	1,100	5 400	8,900	ND	ND	ND		ND		<0.00140	ND	ND			ND		ND
Naphthalene	ma/ka	96	420	560	ND	ND	NT	NT	NT	NT	0.0107.1	ND	ND	ND	ND	ND	ND	NT
n-Propylbenzene	ma/ka	260 6	260 6	260 6	ND	ND	NT	NT	NT	NT	0.0193	ND	ND	ND	ND	ND	ND	NT
Styrene	ma/ka	870	870	870	ND	ND	NT	NT	NT	NT	0.00105 B J	ND	ND	ND	ND	ND	ND	NT
1,1,1,2-Tetrachloroethane	mg/kg	49	230	680	ND	ND	NT	NT	NT	NT	< 0.00349	ND	ND	ND	ND	ND	ND	NT
1,1,2,2-Tetrachloroethane	mg/kg	15	71	670	ND	ND	NT	NT	NT	NT	0.109	ND	ND	ND	ND	ND	ND	NT
Tetrachloroethene (PCE)	mg/kg	170	170	170	0.0633	ND	NT	NT	NT	NT	0.0198	ND	ND	ND	ND	ND	ND	NT
Toluene	mg/kg	820	820	820	ND	ND	NT	NT	NT	NT	0.0269	ND	ND	ND	ND	ND	ND	NT
1,2,3-Trichlorobenzene	mg/kg	NE	NE	NE	ND	ND	NT	NT NT	NT	NT	<0.0174	ND	ND	ND	ND	ND	ND	NT
1,2,4-Trichlorobenzene	mg/kg	140	400	400	ND	ND ND			NT		< 0.0174	ND ND		ND ND		ND	ND ND	NT NT
1,1,1-1 richloroethane	mg/kg	640	640	640	ND						<0.00349	ND ND				ND		
	mg/kg	20	130	1,200							<0.00349 0.00303							
Trichlorofluoromethane	ma/ka	1 200	1 200	1 200	0 0152	ND	NT	NT	NT	NT	<0.00333	ND				ND		NT
1.2.3-Trichloropropane	ma/ka	0.1	4.4	19	ND	ND	NT	NT NT	NT	NT	<0.0174	ND	ND	ND	ND	ND	ND	NT
1,2,4-Trimethylbenzene	ma/ka	220	220	220	ND	ND	NT	NT	NT	NT	0.251	ND	ND	ND	0.98	ND	ND	NT
1,3,5-Trimethylbenzene	mg/kg	180	180	180	ND	ND	NT	NT	NT	NT	0.0868	ND	ND	ND	ND	ND	ND	NT

Eddy-Kirby Parcels, Clevel	dy-Kirby Parcels, Cleveland, Cuyahoga County, Ohio						IA	-11						IA	12			
Sample ID (Depth ¹)		A	pplicable Standard	ls	B-13 (4-5) *	B-14 (4-6) *	B-IA-11-01 (0-2) *	B-IA-11-01 (4-6) *	B-IA-11-02 (0-2) *	B-IA-11-02 (6-7) *	P4-IA12-SB01 (4- 6)	B-06 (8-10) *	B-07 (8-10) *	B-09 (8-10) *	B-10 (4-6) *	B-11 (4-6) *	B-16 (8-10 *	B-IA-12-02 (0-2) *
Collection Date		GDCS Residential	GDCS Commercial/	GDCS Construction	3/28/2000	3/28/2000	6/11/2004	6/11/2004	6/11/2004	6/11/2004	6/13/2023	3/24/2000	3/24/2000	3/24/2000	3/28/2000	3/28/2000	3/29/2000	6/11/2004
Parameter	Units ²	Land Use ³	Land Use 4	Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds - V	′OCs																	
Vinyl chloride	mg/kg	1.3	49	280	ND	ND	NT	NT	NT	NT	<0.00349	ND	ND	ND	ND	ND	ND	NT
Xylenes, Total	mg/kg	260	260	260	ND	1.81	NT	NT	NT	NT	0.324	ND	ND	ND	6.36	4.17	ND	NT
I. FT - Feet below grade I. FT - Feet below grade mg/kg = Milligrams per kilogram - parts Ohio VAP GDCS Residential Land Use. Ohio VAP GDCS Commercial/Industrial Ohio VAP GDCS Construction/Excavati Supplemental standards from the Ohio V NE: No standard established by applicable Bold numbers indicate a concentration abo Bold and shaded numbers indicate a detect *: Samples collected by HzW	ber million (p Land Use. on Activities. AP CIDARS agency we laborator ted concentra	pm) y detection limits. ation above a compariso	n standard. If exceeding n	nore than one standard, th				¢,	K.									

ND: No Detections

Table 4A: Summary of VO	Cs in So	il							•									
Eddy-Kirby Parcels, Cleve	land, Cu	yahoga County,	Ohio		IA-12		IA-13	1		r	· · · · ·		AI	-14	1	ī	1	1
Sample ID (Depth ¹)		А	Applicable Standard	ds	B-IA-12-01 (4-6) *	B-38 (13-15) *	B-39 (14-16) *	B-40 (13-15) *	P4-IA14-SB01 (0- 2)	P4-IA14-SB02 (2 4)	2· P4-IA14-SB03 (0· 2)	B-41 (2-4) *	B-41A (0-2) *	B-41A (2-4) *	B-41A (4-6) *	B-42 (2-4) *	B-42A (0-2) *	B-42A (2-4) *
Collection Date		GDCS Residential	GDCS Commercial/	GDCS Construction	6/11/2004	5/30/2001	5/30/2001	5/30/2001	6/13/2023	6/13/2023	6/19/2023	5/30/2001	6/10/2004	6/10/2004	6/10/2004	5/30/2001	6/10/2004	6/10/2004
Parameter	Units ²	Land Use ³	Land Use 4	Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds -	VOCs			n				•	•		<u> </u>		1	•	•		•	
Acetone	mg/kg	110,000	110,000	110,000	NT	NT	NT	NT	<0.0745	<0.0697	<0.0635	NT	NT	NT	NT	NT	NT	NT
Acrylonitrile	mg/kg	6.1	30	62	NT	NT	NT	NT	<0.0186	<0.0174	<0.0159	NT	NT	NT	NT	NT	NT	NT
Benzene	mg/kg	28	130	1,200	NT	ND NT	ND	ND	0.00119 J	0.000898 J	<0.00127	ND NT	NT NT	NT	NT	ND	NT NT	NT
Bromodichloromethane	mg/kg mg/kg	 7.3	 33	1NE 300	NT		NT		<0.0186	<0.0174	<0.0159		NT NT			NT NT		NT
Bromoform	mg/kg	460	910	910	NT	NT	NT	NT	< 0.0373	< 0.0349	< 0.0317	NT	NT	NT	NT	NT	NT	NT
Bromomethane	mg/kg	17	76	550	NT	NT	NT	NT	<0.0186	<0.0174	<0.0159	NT	NT	NT	NT	NT	NT	NT
n-Butylbenzene	mg/kg	110 °	110 ⁶	110 6	NT	NT	NT	NT	<0.0186	<0.0174	<0.0159	NT	NT	NT	NT	NT	NT	NT
sec-Butylbenzene	mg/kg	<u>140 ⁶</u>	140 ⁶	140 ⁶	NT	NT	NT	NT NT	< 0.0186	<0.0174	< 0.0159	NT	NT NT	NT	NT	NT	NT NT	NT
tert-Butylbenzene	mg/kg	180 °	180 °	180 °					< 0.00745	<0.00697	<0.00635							
Chlorobenzene	mg/kg mg/kg	660	74	760	NT	NT	NT	NT NT	<0.00745	<0.00897	<0.00835	NT	NT NT	NT	NT NT	NT	NT NT	NT
Chlorodibromomethane	mg/kg	130	800	800	NT	NT	NT	NT	< 0.00373	< 0.00349	<0.00317	NT	NT	NT	NT	NT	NT	NT
Chloroethane	mg/kg	2,100	2,100	2,100	NT	NT	NT	NT	<0.00745	<0.00697	<0.00635	NT	NT	NT	NT	NT	NT	NT
Chloroform	mg/kg	7.9	35	320	NT	NT	NT	NT	<0.00373	<0.00349	<0.00317	NT	NT	NT	NT	NT	NT	NT
Chloromethane	mg/kg	280 NE	1,200	1,300					<0.0186	<0.0174	<0.0159							
4-Chlorotoluene	mg/kg mg/kg	NE	NE	NE	NT	NT	NT	NT	<0.00373	<0.00349	<0.00317	NT	NT	NT	NT	NT	NT	NT
1,2-Dibromo-3-Chloropropane	mg/kg	0.37	1.6	15	NT	NT	NT	NT	< 0.0373	< 0.0349	< 0.0317	NT	NT	NT	NT	NT	NT	NT
1,2-Dibromoethane (EDB)	mg/kg	0.89	4.2	39	NT	NT	NT	NT	<0.00373	<0.00349	<0.00317	NT	NT	NT	NT	NT	NT	NT
Dibromomethane	mg/kg	59	250 °	870 ⁶	NT	NT	NT	NT	<0.00745	<0.00697	<0.00635	NT	NT	NT	NT	NT	NT	NT
1,2-Dichlorobenzene	mg/kg	380	380	380	NT	NT NT	NT	NT NT	< 0.00745	<0.00697	<0.00635	NT	NT NT	NT	NT NT	NT	NT NT	NT
1,3-Dichlorobenzene	mg/kg	<u>NE</u> 65	<u>NE</u> 290	NE 2.600			NT		<0.00745	<0.00697	<0.00635							NT
Dichlorodifluoromethane	mg/kg	850	850	850	NT	NT	NT	NT	<0.00373 J3	<0.00349 J3	<0.00000	NT	NT	NT	NT	NT	NT	NT
1,1-Dichloroethane	mg/kg	89	390	1,700	NT	NT	NT	NT	<0.00373	<0.00349	<0.00317	NT	NT	NT	NT	NT	NT	NT
1,2-Dichloroethane (EDC)	mg/kg	11	52	480	NT	NT	NT	NT	< 0.00373	< 0.00349	< 0.00317	NT	NT NT	NT	NT	NT	NT	NT
1,1-Dichloroethene	mg/kg	360	1,200	360					< 0.00373	<0.00349	<0.00317							
trans-1,2-Dichloroethene	mg/kg	1.900	1,900	1,900	NT	NT	NT	NT	< 0.00745	<0.00697	<0.00635	NT	NT	NT	NT	NT	NT	NT
1,2-Dichloropropane	mg/kg	39	170	180	NT	NT	NT	NT	<0.00745	<0.00697	<0.00635	NT	NT	NT	NT	NT	NT	NT
1,1-Dichloropropene	mg/kg	NE	NE	NE	NT	NT	NT	NT	< 0.00373	< 0.00349	<0.00317	NT	NT	NT	NT	NT	NT	NT
1,3-Dichloropropane	mg/kg	1,500 NE	1,500 NE	1,500					<0.00745	<0.00697	<0.00635							
trans-1 3-Dichloropropene	ma/ka	NE	NE	NE	NT	NT	NT	NT NT	<0.00373	< 0.00349	<0.00635	NT	NT	NT	NT NT	NT	NT NT	NT
2,2-Dichloropropane	mg/kg	NE	NE	NE	NT	NT	NT	NT	< 0.00373	< 0.00349	<0.00317	NT	NT	NT	NT	NT	NT	NT
Ethylbenzene	mg/kg	140	480	480	NT	ND	ND	ND	0.0025 B J	0.00279 B J	<0.00317	19.5	NT	NT	NT	ND	NT	NT
Hexachloro-1,3-butadiene	mg/kg	17	17	17	NT	NT	NT	NT	< 0.0373	<0.0349	<0.0317	NT	NT	NT	NT	NT	NT	NT
n-Hexane	mg/kg	140	140	140	NI				<0.00745	<0.00697	< 0.00635					NI		NI
n-Isopropyltoluene	mg/kg	270	270	270			NT		<0.00373	<0.00166.5	<0.00317		NT					NT
2-Butanone (MEK)	mg/kg mg/kg	28,000	28.000	28.000	NT	NT	NT	NT	<0.149	<0.139	<0.127	NT	NT	NT	NT	NT	NT	NT
Methylene Chloride	mg/kg	740	3,300	3,300	NT	NT	NT	NT	< 0.0373	<0.0349	<0.0317	NT	NT	NT	NT	NT	NT	NT
4-Methyl-2-pentanone (MIBK)	mg/kg	3,400	3,400	3,400	NT	NT	NT	NT	<0.0373	<0.0349	<0.0317	NT	NT	NT	NT	NT	NT	NT
Methyl tert-butyl ether (MTBE)	mg/kg	1,100	5,400	8,900	ND	ND	ND	ND	0.0025	< 0.00139	<0.00127	NT	ND	ND	ND	ND	ND	ND
Naphthalene	mg/kg	96	420	560	NT	NT	NT	NT NT	0.0192	0.275	<0.0159 J4	NT	NT NT	NT	NT	NT	NT NT	NT
n-Propylbenzene Styropo	mg/kg	260 °	260 °	260 °					0.0028 J	0.00166 J	<0.00635							
1.1.1.2-Tetrachloroethane	ma/ka	49	230	680	NT	NT	NT	NT	< 0.00373	< 0.00349	<0.00317	NT	NT	NT	NT	NT	NT	NT
1,1,2,2-Tetrachloroethane	mg/kg	15	71	670	NT	NT	NT	NT	< 0.00373	< 0.00349	<0.00317	NT	NT	NT	NT	NT	NT	NT
Tetrachloroethene (PCE)	mg/kg	170	170	170	NT	NT	NT	NT	< 0.00373	0.0254	<0.00317	NT	NT	NT	NT	NT	NT	NT
I oluene	mg/kg	820 N/5	820	820	NT				0.00603 J	0.00386 J	<0.00635					ND NT		
1.2.4-Trichlorobenzene	ma/ka	140	400	400	NT	NT	NT	NT NT	<0.0186	<0.0174	<0.0159	NT	NT NT	NT	NT	NT	NT NT	NT
1,1,1-Trichloroethane	mg/kg	640	640	640	NT	NT NT	NT	NT NT	<0.00373	< 0.00349	<0.00317	NT	NT NT	NT	NT	NT	NT	NT
1,1,2-Trichloroethane	mg/kg	28	130	1,200	NT	NT	NT	NT	<0.00373	<0.00349	<0.00317	NT	NT	NT	NT	NT	NT	NT
Trichloroethene (TCE)	mg/kg	10	48	17	NT		NT		<0.00149	<0.00139	<0.00127	NT				NT		NT
1 2 3-Trichloropropage	mg/kg mg/kg	1,200	1,200	1,200			NI NT		<0.00373 J3 <0.0186	<pre><0.00349 J3 <0.0174</pre>	<0.00317	NI NT						
1,2,4-Trimethvlbenzene	ma/ka	220	220	220	NT	NT	NT	NT	0.00805	0.00372 J	<0.00635	NT	NT	NT	NT	NT	NT	NT
1,3,5-Trimethylbenzene	mg/kg	180	180	180	NT	NT	NT	NT	<0.00745	<0.00697	<0.00635	NT	NT	NT	NT	NT	NT	NT

* : Samples collected by HzW ND : No Detections NT : Not tested

Eddy-Kirby Parcels, Cleve	land, Cu	yahoga County	, Ohio		IA-12		IA-13						IA	-14				
Sample ID (Depth ¹)		Å	Applicable Standard	ds	B-IA-12-01 (4-6) *	B-38 (13-15) *	B-39 (14-16) *	B-40 (13-15) *	P4-IA14-SB01 (0 2)	P4-IA14-SB02 (2- 4)	P4-IA14-SB03 (0- 2)	B-41 (2-4) *	B-41A (0-2) *	B-41A (2-4) *	B-41A (4-6) *	B-42 (2-4) *	B-42A (0-2) *	B-42A (2-4) *
Collection Date		GDCS Residential	GDCS Commercial/	GDCS Construction	6/11/2004	5/30/2001	5/30/2001	5/30/2001	6/13/2023	6/13/2023	6/19/2023	5/30/2001	6/10/2004	6/10/2004	6/10/2004	5/30/2001	6/10/2004	6/10/2004
Parameter	Units ²	Land Use ³	Land Use 4	Activities 5	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds -	/OCs						• •	• •					-		• •			
Vinyl chloride	mg/kg	1.3	49	280	NT	NT	NT	NT	<0.00373	< 0.00349	<0.00317	NT	NT	NT	NT	NT	NT	NT
Xylenes, Total	mg/kg	260	260	260	NT	ND	ND	ND	0.0192	0.00926	<0.00825	78.5	NT	NT	NT	0.0735	NT	NT
Notes 1. FT - Feet below grade 2. mg/kg = Milligrams per kilogram - parts 3. Ohio VAP GDCS Residential Land Use. 4. Ohio VAP GDCS Commercial/Industria 5. Ohio VAP GDCS Construction/Excavat 6. Supplemental standards from the Ohio 1 NE: No standard established by applicable	pm)	<i>⟨R</i>	P .															
NE. No statuaru estatuisteu oy applicatie agency																		
Dold and shaded numbers indicate a data	nbers indicate a concentration above laboratory detection limits.																	
Bold and shaded numbers indicate a deter	ciea concentr	alion above a compariso	n standard, if exceeding r	more man one standard, th														
Table 4A: Summary of VOCs in Soil Eddy-Kirby Parcels, Cleveland, Cuyahoga County, C

Eddy-Kirby Parcels, Cleve	land, Cu	yahoga County,	, Ohio								IA	-14						
Sample ID (Depth ¹)		A	Applicable Standarc	ds	B-42A (4-6) *	B-44A (0-2) *	B-IA-14-1 (0-2) *	B-IA 14-1 (2-4) *	B-IA 14-1 (4-6) *	B-IA 14-2 (0-2) *	B-IA 14-2 (2-4) *	B-IA 14-2 (4-6) *	B-IA 14-3 (0-2) *	B-IA 14-3 (2-4) *	B- IA 14-3 (4-6) *	B-IA 14-4 (0-2) *	B-IA 14-4 (2-4) *	B-IA 14-4 (4-6) *
Collection Date		GDCS Residential	GDCS Commercial/	GDCS Construction	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004
Parameter	Units ²	Land Use ³	Land Use 4	Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds -	VOCs																	
Acetone	mg/kg	110,000	110,000	110,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Acrylonitrile	mg/kg	6.1	30	62	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Benzene	mg/kg	28	130	1,200	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Bromobenzene	mg/kg	NE	NE	NE	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Bromodichloromethane	mg/kg	7.3	33	300	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Bromoform	mg/kg	460	910	910	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Bromomethane	mg/kg	17	76	550	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
n-Butylbenzene	mg/kg	<u>110 °</u>	110 °	110 °	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
sec-Butylbenzene	mg/kg	<u>140 °</u>	140 °	140 °	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI NI	NI
tert-Butylbenzene	mg/kg	<u>180 °</u>	180 °	180 °	NI		NI		NI	NI	NI	NI	NI	NI		NI		NI
Carbon tetrachloride	mg/kg	16	74	460														
Chlorodibromomothana	mg/kg	<u> </u>	760	760			NI				NI					NI		
Chloroethane	mg/kg	2 100	2 100	2 100	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Chloroform	ma/ka	79	35	320	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Chloromethane	ma/ka	280	1.200	1.300	NT	NT	NT	NT	NT I	NT	NT	NT NT	NT	NT	T NT	NT	NT	NT
2-Chlorotoluene	mg/kg	NE	NE	NE	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4-Chlorotoluene	mg/kg	NE	NE	NE	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2-Dibromo-3-Chloropropane	mg/kg	0.37	1.6	15	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2-Dibromoethane (EDB)	mg/kg	0.89	4.2	39	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Dibromomethane	mg/kg	59	250 °	870 ⁶	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2-Dichlorobenzene	mg/kg	380	380	380	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,3-Dichlorobenzene	mg/kg	NE	NE	NE	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,4-Dichlorobenzene	mg/kg	65	290	2,600														
	mg/kg	850	850	850			NI				NI					NI		
1,1-Dichloroethane (EDC)	mg/kg	<u> </u>	52	480	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1.1-Dichloroethene	ma/ka	360	1,200	360	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
cis-1,2-Dichloroethene	mg/kg	310	2,400	2,400	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
trans-1,2-Dichloroethene	mg/kg	1,900	1,900	1,900	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2-Dichloropropane	mg/kg	39	170	180	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,1-Dichloropropene	mg/kg	NE	NE	NE	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,3-Dichloropropane	mg/kg	1,500	1,500	1,500	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT	NT	NT
cis-1,3-Dichloropropene	mg/kg	NE	NE	NE														
1,3-Dichloropropene	mg/kg	NE	NE	NE			NT											
Ethylbenzene	mg/kg	140	180	/NL //80			NT		NT		NT					NT		
Heyachloro-1 3-butadiene	mg/kg	140	400	17	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
n-Hexane	ma/ka	140	140	140	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT NT	NT	NT	NT
Isopropylbenzene	ma/ka	270	270	270	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
p-lsopropyltoluene	ma/ka	160	260 6	260 6	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2-Butanone (MEK)	mg/kg	28,000	28,000	28,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Methylene Chloride	mg/kg	740	3,300	3,300	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4-Methyl-2-pentanone (MIBK)	mg/kg	3,400	3,400	3,400	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Methyl tert-butyl ether (MTBE)	mg/kg	1,100	5,400	8,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	mg/kg	96	420	560	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
n-Propylbenzene	mg/kg	260 ⁶	260 °	260 ⁶	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Styrene	mg/kg	870	870	870	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,1,1,2-Tetrachloroethane	mg/kg	49	230	680	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,1,2,2-Tetrachloroethane	mg/kg	15	71	670	NT				NT NT	NT								NT
	mg/kg	170	170	170														
123 Trichlorohonzono	mg/kg	820	820 NE	820 NE														
1.2.3- Trichlorobenzene	ma/kg	140	400	400			NT		NT		NT					NT		
1.1.1-Trichloroethane	ma/ka	640	640	640	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,1,2-Trichloroethane	mg/kg	28	130	1,200	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Trichloroethene (TCE)	mg/kg	10	48	17	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Trichlorofluoromethane	mg/kg	1,200	1,200	1,200	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2,3-Trichloropropane	mg/kg	0.1	4.4	19	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2,4-Trimethylbenzene	mg/kg	220	220	220	NT	NT	NT	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,3,5-Trimethylbenzene	mg/kg	180	180	180	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT

Table 4A: Summary of VOCs in Soil Eddy-Kirby Parcels, Cleveland, Cuyahoga County, Ohio

Eddy-Kirby Parcels, Clev	eland, Cuy	/ahoga County,	Ohio	-							IA	-14						
Sample ID (Depth ¹)		A	pplicable Standard	ls	B-42A (4-6) *	B-44A (0-2) *	B-IA-14-1 (0-2) *	B-IA 14-1 (2-4) *	B-IA 14-1 (4-6) *	B-IA 14-2 (0-2) *	B-IA 14-2 (2-4) *	B-IA 14-2 (4-6) *	B-IA 14-3 (0-2) *	B-IA 14-3 (2-4) *	B- IA 14-3 (4-6) *	B-IA 14-4 (0-2) *	B-IA 14-4 (2-4) *	B-IA 14-4 (4-6) *
Collection Date		GDCS Residential	GDCS Commercial/	GDCS Construction	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004
Parameter	Units ²	Land Use ³	Land Use ⁴	Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds	- VOCs					• •						• •	• •		• •		• •	
Vinyl chloride	mg/kg	1.3	49	280	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Xylenes, Total	mg/kg	260	260	260	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
I. FT - Feet below grade I. FT - Feet below grade mg/kg = Milligrams per kilogram - pa Ohio VAP GDCS Residential Land U: Ohio VAP GDCS Commercial/Indust Ohio VAP GDCS Construction/Excar Supplemental standards from the Oh NE: No standard established by applica Bold numbers indicate a concentration Bold and shaded numbers indicate a de *: Samples collected by HzW ND : No Detections	rts per million (pp se. rial Land Use. vation Activities. io VAP CIDARS ble agency above laboratory stected concentra	om) r detection limits. ttion above a compariso	n standard. If exceeding n	nore than one standard, th				¢,	Y.									

NT : Not tested

Table 4A: Summary of VC	Cs in So	il Ivahoga County	Ohio		General	Coverage	1 14	4-53	I IA	-54	14	A-55	1456	1 14	457	1	General Covera	ae
	Juna, ea		, onio		P4-GC-SB01 (0-	P4-GC-MW01 (2. P5-1453-SB01 (2	P5-1453-MW01	P5-1454-SB01 (2	P5-1054-MW01		P5-1456-SB01 (2	P5-1456-MW01			P5-GC-SB01 (2-	P5-GC-SB02 (2	P5-GC-SB03 (6-
Sample ID (Depth ¹)		4	Applicable Standa	rds	2)	4)	4)	(4-6)	4)	(14-16)	6)	4)	(6-8)	4)	(2-4)	4)	4)	8)
Collection Date		GDCS Residential	GDCS Commercial Industrial	GDCS Construction	6/19/2023	6/19/2023	6/20/2023	6/20/2023	6/21/2023	6/21/2023	6/22/2023	6/22/2023	6/21/2023	6/19/2023	6/20/2023	6/20/2023	6/22/2023	6/22/2023
Parameter	Units ²	Land Use ³	Land Use ⁴	Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds -	VOCs	•	11							•		•	-					
Acetone	mg/kg	110,000	110,000	110,000	<0.299	< 0.0653	<0.0696	<0.0643	<0.0578	<5.75	<0.0746	0.0662 J	<0.0704	<0.0695	<0.0583	<0.0592	<0.0737	<0.0760
Acrylonitrile	mg/kg	6.1	30	62	<0.0749	< 0.0163	<0.0174	<0.0161	<0.0144	<1.44	<0.0186 J3	<0.0169 J3	<0.0176	<0.0174	<0.0146	<0.0148	<0.0184 J3	<0.0190 J3
Benzene	mg/kg	28	130	1,200	0.00374 J	<0.00131	< 0.00139	<0.00129	<0.00116	<0.115	< 0.00149	< 0.00135	< 0.00141	< 0.00139	<0.00117	< 0.00118	<0.00147	< 0.00152
Bromobenzene	mg/kg	NE 7.2	NE	<u>NE</u>	< 0.0749	< 0.0163	< 0.0174	<0.0161	<0.0144	<1.44	<0.0186	<0.0169	< 0.0176	< 0.0174	<0.0146	<0.0148	<0.0184	<0.0190
Bromoform	mg/kg	460	910	910	<0.0150	<0.00327	<0.00348	<0.00322	<0.00289	<2.88	<0.00373	<0.00337	<0.00352	<0.00348	<0.00291	<0.00290	<0.00308	<0.00380
Bromomethane	mg/kg	17	76	550	< 0.0749	< 0.0163	< 0.0174	< 0.0161	< 0.0144	<1.44	< 0.0186	< 0.0169	< 0.0176	< 0.0174	< 0.0146	< 0.0148	< 0.0184	<0.0190
n-Butylbenzene	mg/kg	110 ⁶	110 °	110 6	0.0521 J	< 0.0163	<0.0174	<0.0161	<0.0144	8.21	<0.0186	<0.0169	<0.0176	<0.0174	<0.0146	<0.0148	<0.0184	<0.0190
sec-Butylbenzene	mg/kg	140 ⁶	140 ⁶	140 ⁶	0.0325 J	< 0.0163	<0.0174	<0.0161	<0.0144	7.93	<0.0186	<0.0169	<0.0176	<0.0174	<0.0146	<0.0148	<0.0184	<0.0190
tert-Butylbenzene	mg/kg	180 ⁶	180 ⁶	180 ⁶	<0.0299	<0.00653	<0.00696	<0.00643	<0.00578	0.446	<0.00746	<0.00674	<0.00704	<0.00695	<0.00583	<0.00592	<0.00737	<0.00760
Carbon tetrachloride	mg/kg	16	74	460	< 0.0299	< 0.00653	< 0.00696	< 0.00643	< 0.00578	< 0.575	< 0.00746	< 0.00674	< 0.00704	< 0.00695	< 0.00583	< 0.00592	<0.00737	< 0.00760
Chlorobenzene	mg/kg	660	760	760	<0.0150	<0.00327	<0.00348	<0.00322	<0.00289	<0.288	<0.00373	<0.00337	<0.00352	<0.00348	<0.00291	< 0.00296	<0.00368	<0.00380
Chloroethane	mg/kg	2 100	2 100	2 100	<0.0130	<0.00527	<0.00348	<0.00522	<0.00209	<0.200	<0.00373	<0.00337	<0.00332	<0.00348	<0.00291	<0.00290	<0.00300	<0.00300
Chloroform	ma/ka	7.9	35	320	< 0.0150	< 0.00327	< 0.00348	< 0.00322	<0.00289	<0.288	< 0.00373	< 0.00337	< 0.00352	< 0.00348	< 0.00291	< 0.00296	<0.00368	<0.00380
Chloromethane	mg/kg	280	1,200	1,300	< 0.0749	< 0.0163	<0.0174	<0.0161	< 0.0144	<1.44	<0.0186	< 0.0169	< 0.0176	<0.0174	<0.0146	< 0.0148	<0.0184	<0.0190
2-Chlorotoluene	mg/kg	NE	NE	NE	<0.0150	<0.00327	<0.00348	<0.00322	<0.00289	<0.288	<0.00373	<0.00337	<0.00352	<0.00348	<0.00291	<0.00296	<0.00368	<0.00380
4-Chlorotoluene	mg/kg	NE	NE	NE	< 0.0299	< 0.00653	< 0.00696	< 0.00643	< 0.00578	<0.575	< 0.00746	< 0.00674	< 0.00704	< 0.00695	<0.00583	< 0.00592	<0.00737	< 0.00760
1,2-Dibromo-3-Chloropropane	mg/kg	0.37	1.6	15	<0.150	<0.0327	<0.0348	<0.0322	<0.0289	<2.88	<0.0373	<0.0337	<0.0352	<0.0348	< 0.0291	< 0.0296	<0.0368	<0.0380
Dibromomethane	mg/kg	0.89	4.2 250 ⁶	870.6	<0.0150	<0.00327	<0.00348	<0.00322	<0.00289	<0.288	<0.00373	< 0.00337	< 0.00352	<0.00348	<0.00291	<0.00296	<0.00368	<0.00380
1 2-Dichlorobenzene	mg/kg	380	380	380	<0.0299	<0.00053	<0.00090	<0.00043	<0.00578	<0.575	<0.00746	<0.00074	<0.00704	<0.00095	<0.00583	<0.00592	<0.00737	<0.00760
1.3-Dichlorobenzene	ma/ka	NE	NE	NE	<0.0299	<0.00653	< 0.00696	< 0.00643	<0.00578	<0.575	< 0.00746	< 0.00674	< 0.00704	< 0.00695	<0.00583	< 0.00592	<0.00737	< 0.00760
1,4-Dichlorobenzene	mg/kg	65	290	2,600	<0.0299	< 0.00653	<0.00696	<0.00643	<0.00578	<0.575	<0.00746	<0.00674	<0.00704	<0.00695	<0.00583	<0.00592	< 0.00737	<0.00760
Dichlorodifluoromethane	mg/kg	850	850	850	<0.0150	< 0.00327	<0.00348	< 0.00322	<0.00289	<0.288	< 0.00373	< 0.00337	< 0.00352	< 0.00348	<0.00291	< 0.00296	<0.00368	<0.00380
1,1-Dichloroethane	mg/kg	89	390	1,700	< 0.0150	<0.00327	< 0.00348	<0.00322	<0.00289	<0.288	<0.00373	<0.00337	< 0.00352	<0.00348	<0.00291	< 0.00296	<0.00368	<0.00380
1,2-Dichloroethene	mg/kg	360	<u> </u>	360	<0.0150	<0.00327	<0.00348		<0.00289	<0.288	<0.00373	<0.00337	<0.00352	<0.00348	<0.00291	<0.00296	<0.00368	<0.00380
cis-1,2-Dichloroethene	mg/kg	310	2,400	2,400	< 0.0150	<0.00327	< 0.00348	< 0.00322	<0.00289	<0.288	< 0.00373	< 0.00337	< 0.00352	< 0.00348	< 0.00291	< 0.00296	<0.00368	<0.00380
trans-1,2-Dichloroethene	mg/kg	1,900	1,900	1,900	<0.0299	< 0.00653	<0.00696	<0.00643	<0.00578	<0.575	<0.00746	<0.00674	<0.00704	<0.00695	<0.00583	<0.00592	< 0.00737	<0.00760
1,2-Dichloropropane	mg/kg	39	170	180	<0.0299	< 0.00653	<0.00696	<0.00643	<0.00578	<0.575	<0.00746 J4	<0.00674 J4	<0.00704	<0.00695	<0.00583	<0.00592	<0.00737 J4	<0.00760 J4
1,1-Dichloropropene	mg/kg	NE	NE	NE 1.500	< 0.0150	<0.00327	< 0.00348	<0.00322	< 0.00289	<0.288	<0.00373 J4	<0.00337 J4	< 0.00352	< 0.00348	<0.00291	<0.00296 J4	<0.00368 J4	<0.00380 J4
1,3-Dichloropropane	mg/kg	1,500	1,500	1,500	<0.0299		<0.00696	<0.00643	<0.00578		<0.00746	<0.00674	<0.00704	<0.00695	<0.00583	<0.00592		<0.00760
trans-1 3-Dichloropropene	ma/ka	NE	NE	NE	<0.0130 34	<0.00653	< 0.00548	<0.00643	<0.00209	<0.200 34	<0.00746	<0.00674	<0.00332 34	<0.00695	<0.00291	<0.00290 J4	<0.00737	<0.00760
2,2-Dichloropropane	mg/kg	NE	NE	NE	< 0.0150	<0.00327	< 0.00348	< 0.00322	<0.00289	<0.288	<0.00373 J3	<0.00337 J3	< 0.00352	< 0.00348	< 0.00291	< 0.00296	<0.00368 J3	<0.00380 J3
Ethylbenzene	mg/kg	140	480	480	0.0265 B	< 0.00327	<0.00348	<0.00322	<0.00289	1.55	<0.00373	< 0.00337	<0.00352	0.00261 B J	<0.00291	<0.00296	< 0.00368	<0.00380
Hexachloro-1,3-butadiene	mg/kg	17	17	17	<0.150	<0.0327	<0.0348 J4	<0.0322 J4	<0.0289 J4	<2.88	<0.0373	< 0.0337	<0.0352	<0.0348	<0.0291 J4	<0.0296	< 0.0368	<0.0380
n-Hexane	mg/kg	140	140	140	<0.0299	< 0.00653	<0.00696	<0.00643	<0.00578	<0.575	<0.00746	<0.00674	<0.00704	<0.00695	<0.00583	<0.00592	0.00413 J	0.0041 J
Isopropylbenzene	mg/kg	270	270	270	0.0217	<0.00327	< 0.00348	<0.00322	< 0.00289	2.39	< 0.00373	< 0.00337	< 0.00352	< 0.00348	<0.00291	< 0.00296	<0.00368	<0.00380
p-Isopropyltoluene	mg/kg	160	260 °	260 °	0.0445	<0.00653	< 0.00696	<0.00643	<0.00578	10.4	< 0.00746	<0.00674	< 0.00704	< 0.00695	<0.00583	< 0.00592	<0.00737	<0.00760
	mg/kg	28,000	28,000	28,000	<0.599 <0.150	<0.131	<0.139	<0.129	<0.110	<11.5	<0.149	<0.135	<0.141	<0.139	<0.117	<0.118	<0.14/	<0.152
4-Methyl-2-pentanone (MIBK)	mg/kg	3 400	3,300	3,300	<0.150	<0.0327	<0.0348	<0.0322	<0.0289	<2.88	<0.0373	<0.0337	<0.0352	<0.0348	<0.0291	<0.0290	<0.0308	<0.0380
Methyl tert-butyl ether (MTBE)	ma/ka	1,100	5.400	8,900	< 0.00599	<0.00131	< 0.00139	< 0.00129	<0.00116	<0.115	< 0.00149	< 0.00135	< 0.00141	< 0.00139	< 0.00117	< 0.00118	<0.00147	< 0.00152
Naphthalene	mg/kg	96	420	560	15.3 E	0.0489 B	<0.0174	0.0333	0.0144 J	1.8 J4	<0.0186	<0.0169	0.0163 J	0.02	0.00738 J	<0.0148 J4	0.0102 J	< 0.0190
n-Propylbenzene	mg/kg	260 °	260 °	260 ⁶	0.0244	< 0.00653	<0.00696	<0.00643	<0.00578	7.18	<0.00746	<0.00674	<0.00704	<0.00695	<0.00583	<0.00592	<0.00737	<0.00760
Styrene	mg/kg	870	870	870	<0.0749	< 0.0163	<0.0174	<0.0161	<0.0144	<1.44	0.00761	<0.0169	<0.0176	<0.0174	<0.0146	<0.0148	0.00741 J	0.00742 J
1,1,1,2-Tetrachloroethane	mg/kg	49	230	680	<0.0150	<0.00327	< 0.00348	<0.00322	<0.00289	<0.288	<0.00373	<0.00337	< 0.00352	< 0.00348	<0.00291	< 0.00296	<0.00368	<0.00380
Tetrachloroethene (PCE)	mg/kg	15	170	670	<0.0150	<0.00327	<0.00348		<0.00289 <0.00289	<0.288	<0.00373	<0.00337 0.0341	<0.00352 0.0184	<0.00348	<0.00291 0.00198 I	<0.00296		<0.00380
Toluene	ma/ka	820	820	820	0.0549	0.00405 J	<0.00540	<0.00643	<0.00203	<0.575	< 0.00746	0.00179 J	0.00817	0.00285 J	0.00216 J	<0.00290	<0.00737	<0.00760
1,2,3-Trichlorobenzene	mg/ka	NE	NE	NE	< 0.0749	< 0.0163	<0.0174 J4	<0.0161 J4	<0.0144 J4	<1.44	< 0.0186	< 0.0169	< 0.0176	< 0.0174	<0.0146 J4	< 0.0148	< 0.0184	<0.0190
1,2,4-Trichlorobenzene	mg/kg	140	400	400	<0.0749	< 0.0163	<0.0174 J4	< 0.0161	<0.0144 J4	<1.44	<0.0186	< 0.0169	<0.0176	<0.0174	<0.0146 J4	<0.0148	<0.0184	<0.0190
1,1,1-Trichloroethane	mg/kg	640	640	640	<0.0150	<0.00327	<0.00348	<0.00322	<0.00289	<0.288	<0.00373	<0.00337	<0.00352	<0.00348	<0.00291	<0.00296	<0.00368	<0.00380
1,1,2-Trichloroethane	mg/kg	28	130	1,200	< 0.0150	<0.00327	< 0.00348	<0.00322	<0.00289	<0.288	< 0.00373	<0.00337	< 0.00352	<0.00348	<0.00291	< 0.00296	<0.00368	<0.00380
Trichlorofluoromethane	mg/kg	1 200	48	1 200	<0.000999	<0.00131	<0.00139	<0.00129		<0.115 <0.288	<0.00149	<0.00135	<0.00469 <0.00352	<0.00139		<0.00118	<0.00147	<0.00152
1,2,3-Trichloropropane	ma/ka	0.1	4.4	19	< 0.0749	<0.0163	< 0.0174	<0.00322	<0.0144	<1.44	< 0.0186	<0.0169	<0.0176	< 0.0174	<0.0146	<0.0148	<0.0184	<0.0190
1,2,4-Trimethylbenzene	mg/kg	220	220	220	0.269	0.00549 J	<0.00696	0.00225 J	<0.00578	69.2	<0.00746	<0.00674	0.017	< 0.00695	0.00216 J	< 0.00592	< 0.00737	<0.00760
1,3,5-Trimethylbenzene	mg/kg	180	180	180	0.0648	<0.00653	< 0.00696	<0.00643	<0.00578	4.72	<0.00746	<0.00674	<0.00704	<0.00695	<0.00583	<0.00592	<0.00737	<0.00760

Partners
P:\Project Files\2093 Cuyahoga County Department of Public Works\2093.10A Eddy-Kirby VAP PII PA\Report\Tables\Excel\Copy of Summary Tables (4,5,6) _Kirby JRK 2

Table 4A: Summary of VOCs in Soil

Eddy-Kirby Parcels, Cleve	eland, Cu	iyahoga County	, Ohio		General	Coverage	IA	A-53	I/	\-54	IA	A-55	IA56	IA	57		General Coveraç	je
Sample ID (Depth ¹)			Applicable Standar	ds	P4-GC-SB01 (0- 2)	P4-GC-MW01 (2 4)	2- P5-IA53-SB01 (2 4)	2- P5-IA53-MW01 (4-6)	P5-IA54-SB01 (2 4)	2- P5-IA54-MW01 (14-16)	P5-IA55-SB01 (4 6)	I- P5-IA56-SB01 (2 4)	2 P5-IA56-MW01 (6-8)	P5-IA57-SB01 (2 4)	P5-IA57-MW01 (2-4)	P5-GC-SB01 (2- 4)	P5-GC-SB02 (2- 4)	P5-GC-SB03 (6- 8)
Collection Date		GDCS Residential	GDCS Commercial	GDCS Construction	6/19/2023	6/19/2023	6/20/2023	6/20/2023	6/21/2023	6/21/2023	6/22/2023	6/22/2023	6/21/2023	6/19/2023	6/20/2023	6/20/2023	6/22/2023	6/22/2023
Parameter	Units ²	Land Use ³	Land Use 4	Activities 5	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Volatile Organic Compounds -	VOCs					•		•				•	•					
Vinyl chloride	mg/kg	1.3	49	280	<0.0150	< 0.00327	<0.00348	<0.00322	<0.00289	<0.288	<0.00373	< 0.00337	<0.00352	<0.00348	<0.00291	<0.00296	<0.00368	<0.00380
Xylenes, Total	0.168	0.00412	<0.00904	0.00119 J	<0.00751	2.75	<0.00970	<0.00876	0.0282	0.235	0.00651 J	<0.00770	<0.00958	0.00141 J				
Notes																		
1. FT - Feet below grade																		
2. mg/kg = Milligrams per kilogram - par	s per million (p	ppm)																
3. Ohio VAP GDCS Residential Land Us	e.																	
4. Ohio VAP GDCS Commercial/Industr	al Land Use.																	
5. Ohio VAP GDCS Construction/Excav	ation Activities	i.																
6. Supplemental standards from the Ohio	VAP CIDARS	S																
NE: No standard established by applicat	le agency																	

Partners
P:\Project Files\2093 Cuyahoga County Department of Public Works\2093.10A Eddy-Kirby VAP PII PA\Report\Tables\Excel\Copy of Summary Tables (4,5,6)_Kirby JRK 2

NE: No standard established by applicable agency

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard. If exceeding more than one standard, th

*: Samples collected by HzW

ND: No Detections

NT : Not tested

Eddy-Kirby Parcels, Cleve	land, Cu	yahoga County,	Ohio		General Coverage
Sample ID (Depth ¹)		Д	pplicable Standard	ls	P5-GC-MW01 (8-10)
Collection Date	1	GDCS Residential	GDCS Commercial/ Industrial	GDCS Construction & Excavation	6/21/2023
Parameter	Units ²	Land Use -	Land Use ⁴	Activities ⁵	Value
Volatile Organic Compounds -	VOCs	-			
Acetone	mg/kg	110.000	110.000	110,000	<0.0826
Acrvlonitrile	ma/ka	6.1	30	62	<0.0206
Benzene	ma/ka	28	130	1.200	<0.00165
Bromobenzene	mg/kg	NE	NE	NE	<0.0206
Bromodichloromethane	mg/kg	7.3	33	300	<0.00413
Bromoform	mg/kg	460	910	910	<0.0413
Bromomethane	mg/kg	17	76	550	<0.0206
n-Butylbenzene	mg/kg	110 ⁶	110 6	110 6	<0.0206
sec-Butylbenzene	mg/kg	140 ⁶	140 ⁶	140 6	<0.0206
tert-Butylbenzene	mg/kg	180 ⁶	180 ⁶	180 °	<0.00826
Carbon tetrachloride	mg/kg	16	74	460	<0.00826
Chlorobenzene	mg/kg	660	760	760	<0.00413
Chlore athere	mg/kg	130	800	800	<0.00413
Chloroform	mg/kg	2,100	2,100	2,100	
	mg/kg	7.9	35	320	<0.00413
	ma/kg		1,200	1,300 NE	<0.0200 <0.00413
4-Chlorotoluene	ma/ka	NE	NE	NE	<0.00413
1.2-Dibromo-3-Chloropropane	ma/ka	0.37	1.6	15	<0.0413
1 2-Dibromoethane (EDB)	ma/ka	0.89	4.2	39	<0.00413
Dibromomethane	ma/ka	59	250 6	870 6	<0.00826
1.2-Dichlorobenzene	ma/ka	380	380	380	<0.00826
1,3-Dichlorobenzene	mg/kg	NE	NE	NE	<0.00826
1,4-Dichlorobenzene	mg/kg	65	290	2,600	<0.00826
Dichlorodifluoromethane	mg/kg	850	850	850	<0.00413
1,1-Dichloroethane	mg/kg	89	390	1,700	<0.00413
1,2-Dichloroethane (EDC)	mg/kg	11	52	480	<0.00413
1,1-Dichloroethene	mg/kg	360	1,200	360	<0.00413
cis-1,2-Dichloroethene	mg/kg	310	2,400	2,400	<0.00413
trans-1,2-Dichloroethene	mg/kg	1,900	1,900	1,900	<0.00826
1,2-Dichloropropane	mg/kg	39	170	180	<0.00820
1,1-Dichloropropene	mg/kg	1.500		1 500	<0.00413
r,5-Dichloropropane	ma/ka	NF	1,500 NF	1,500 NF	<0.00820
trans-1.3-Dichloropropene	mg/kg	NE	NE	NE	<0.00826
2 2-Dichloropropane	ma/ka	NE	NE	NE	<0.00413
Ethylbenzene	ma/ka	140	480	480	<0.00413
Hexachloro-1 3-butadiene	ma/ka	17	17	17	<0.0413
n-Hexane	ma/ka	140	140	140	<0.00826
Isopropylbenzene	ma/ka	270	270	270	<0.00413
p-lsopropyltoluene	ma/ka	160	260 6	260 6	<0.00826
2-Butanone (MEK)	ma/ka	28,000	28,000	28,000	<0.165
Methylene Chloride	ma/ka	740	3,300	3,300	<0.0413
4-Methyl-2-pentanone (MIBK)	ma/ka	3,400	3,400	3,400	<0.0413
Methyl tert-butyl ether (MTBE)	ma/ka	1,100	5,400	8,900	< 0.00165
Naphthalene	mg/ka	96	420	560	<0.0206 J4
n-Propylbenzene	ma/ka	260 °	260 °	260 ⁶	<0.00826
Styrene	mg/kg	870	870	870	<0.0206
1,1,1,2-Tetrachloroethane	mg/kg	49	230	680	<0.00413
1,1,2,2-Tetrachloroethane	mg/kg	15	71	670	<0.00413
Tetrachloroethene (PCE)	mg/kg	170	170	170	<0.00413
Toluene	mg/kg	820	820	820	<0.00826
1,2,3-Trichlorobenzene	mg/kg	NE	NE	NE	<0.0206
1,2,4-Trichlorobenzene	mg/kg	140	400	400	<0.0206
1,1,1-1 richloroethane	mg/kg	640	640	640	<0.00413
Trichloroethene (TCE)	mg/Kg	28	130	1,200	<0.00413
Trichlorofluoromethane	ma/kg	1 200	48	1 200	<0.00/12
1 2 3-Trichloropropage	ma/ka	0.1	4.4	1,200	<0.00413
1 2 4-Trimethylbenzene	ma/ka	220	220	220	<0.0200
1.3.5-Trimethylbenzene	ma/ka	180	180	180	<0.0020
.,.,.	I many	,00	100	,	0.00020

Table 4A: Summary of VOCs in Soil

Partners
P:\Project Files\2093 Cuyahoga County Department of Public Works\2093.10A Eddy-Kirby VAP PII PA\Report\Tables\Excel\Copy of Summary Tables (4,5,6) _Kirby JRK 2

Table 4A: Summary of VOCs in Soil Eddy-Kirby Parcels, Cleveland, Cuyahoga County, Ohio

Eddy-Kirby Parcels, Clevel	and, Cu	yahoga County,	Ohio		General Coverage								
Sample ID (Depth ¹)		A	pplicable Standard	ls	P5-GC-MW01 (8-10)								
Collection Date		GDCS Residential	GDCS Commercial/	GDCS Construction	6/21/2023								
Parameter	Units ²	Land Use ³	Land Use 4	Activities ⁵	Value								
Volatile Organic Compounds - V	/OCs												
Vinyl chloride	chloride mg/kg <u>1.3</u> 49 280												
Xylenes, Total	nes, Total mg/kg 260 260 260 260												
 mg/kg = Milligrams per kilogram - parts Ohio VAP GDCS Residential Land Use. Ohio VAP GDCS Commercial/Industrial Ohio VAP GDCS Construction/Excavati Supplemental standards from the Ohio V NE: No standard established by applicable Bold numbers indicate a concentration abore Bold and shaded numbers indicate a detect *: Samples collected by HzW ND : No Detections NT : Not tested 	per million (p Land Use. on Activities. /AP CIDARS agency ove laborator ted concentr	ppm) cy detection limits. ration above a compariso	n standard. If exceeding n	nore than one standard, th									

Eddy-Kirby Parcels, Clev	veland, Cuyaho	ga County, Ohi	o						IA-01								IA-01A			
Sample ID (Depth ¹)		Aj	pplicable Standar	rds	P4-IA01-SB01 (0-2)	P4-IA01- MW01 (0-2)	HzW-01 (14-15) * ⁶	HB-102 (4-6) * ⁶	HB-102 (6-8) * ⁶	HB-103 (4-6) * ⁶	HB-103 (6-8) * ⁶	B-104 (0-2) * ⁶	B-104 (6-8) * ⁶	HB-101 (0-4) * ⁶	HB-101 (6-8) * ⁶	HzW-02 (8-10) * ⁶	HzW-03 (14-15) * ⁶	HB-100 (0-4) * ⁶	HB-100 (6-8) * ⁶	B-105 (4-6) * ⁶
Collection Date		CDCS Residential	Commercial/	Construction/	6/14/2023	6/14/2023	3/24/2000	10/3/2007	10/3/2007	10/3/2007	10/3/2007	12/11/2008	12/11/2008	10/3/2007	10/3/2007	3/27/2000	3/24/2000	10/3/2007	10/3/2007	12/11/2008
Parameter	Units ²	Land Use ³	Industrial Land Use ⁴	Excavation Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Polynuclear Aromatic Hydro	carbons-PAHs		"	n	-	•		•	•	•	•		•		•	•	•	•		•
Anthracene	mg/kg	36,000	670,000	1,000,000	0.0198	1.17	ND	NT	NT	NT	NT	NT	NT	NT	NT	ND	ND	NT	NT	NT
Acenaphthene	mg/kg	7,200	1,000,000	290,000	0.0326	0.845	ND	NT	NT	NT	NT	NT	NT	NT	NT	ND	ND	NT	NT	NT
Acenaphthylene	mg/kg	7,200	130,000 5	290,000 ⁵	0.00487 J	0.135	ND	NT	NT	NT	NT	NT	NT	NT	NT	ND	ND	NT	NT	NT
Benzo(a)anthracene	mg/kg	23	610	9,600	0.0343	1.58	ND	ND	ND	ND	ND	0.033	0.012	ND	ND	ND	ND	0.661	ND	ND
Benzo(a)pyrene	mg/kg	2.3	62	230	0.0457	0.673	ND	ND	ND	ND	ND	0.026	ND	ND	ND	ND	ND	0.286	ND	ND
Benzo(b)fluoranthene	mg/kg	23	620	10,000	0.0615	0.719	ND	ND	ND	ND	ND	0.033	ND	ND	ND	ND	ND	0.563	ND	ND
Benzo(g,h,i)perylene	mg/kg	3,600	67,000 ⁵	430,000 ⁵	0.0277	0.239	ND	NT	NT	NT	NT	NT	NT	NT	NT	ND	ND	NT	NT	NT
Benzo(k)fluoranthene	mg/kg	230	6,200	100,000	0.0203	<0.00700	ND	ND	ND	ND	ND	0.012	ND	ND	ND	ND	ND	0.291	ND	ND
Chrysene	mg/kg	2,300	62,000	1,000,000	0.0279	1.86	ND	ND	ND	ND	ND	0.034	0.015	ND	ND	ND	ND	0.61	ND	ND
Dibenz(a,h)anthracene	mg/kg	2.3	62	1,000	0.00637 J	0.118	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	mg/kg	4,800	89,000	170,000	0.0938	3.2	ND	NT	NT	NT	NT	NT	NT	NT	NT	ND	ND	NT	NT	NT
Fluorene	mg/kg	4,800	89,000	580,000	0.0979	1.56	ND	NT	NT 🧹	NT NT	NT	NT	NT	NT	NT	ND	ND	NT	NT	NT
Indeno(1,2,3-cd)pyrene	mg/kg	23	620	10,000	0.0333	0.295	ND	ND	ND	ND	ND	0.019	0.023	ND	ND	ND	ND	0.371	ND	ND
Naphthalene	mg/kg	96	420	560	0.184	3.72	ND	ND	ND	ND	ND	0.099	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	mg/kg	36,000	670,000 ⁵	1,000,000 5	0.162	5.5	ND	NT	NT	NT	NT	NT	NT	NT	NT	ND	ND	NT	NT	NT
Pyrene	mg/kg	3,600	67,000	430,000	0.0748	1.98	ND	NT	NT	NT	NT	NT	NT	NT	NT	ND	ND	NT	NT	NT
1-Methylnaphthalene	mg/kg	350	390	390	0.0515	0.693	NT	NT	NT	NT	NT	NT	NT	NT	NT	ND	ND	NT	NT	NT
2-Methylnaphthalene	mg/kg	480	8,900	5,800	0.112	1.23	ND	NT	NT	NT	NT	NT	NT	NT	NT	ND	ND	NT	NT	NT
Total Petroleum Hydrocarbo	ns-TPHs																			
C6-C12 Hydrocarbons	mg/kg	10,000	10,000	10,000	0.0498 J	0.861	NT	ND	ND	ND	ND	750	690	ND	1.66	NT	NT	88.2	1.37	8,800
C10-C20 Hydrocarbons	mg/kg	10,000	10,000	10,000	84.6	401	NT	ND 🔰	10.2	ND	9.93	7	9.6	ND	5.53	NT	NT	40.1	5.07	ND
C20-C34 Hydrocarbons	mg/kg	20,000	20,000	20,000	468	5040	NT	ND	10.9	7.8	9.27	26	25	4.13	6.95	NT	NT	222	8.07	3.4
C6-C7 Hydrocarbons					NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C7-C16 Hydrocarbons	1	N	lo Current Standar	ds	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C16-C32 Hydrocarbons]				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

Notes

1. FT - Feet below grade 2. mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Commercial/Industrial Land Use.

4. Ohio VAP GDCS Construction/Excavation Activities.

5. Supplemental standards from the Ohio VAP CIDARS

6. Samples analyzed for SVOCs by SW8270B

7. TPH T/R by E418.1

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample. ND : No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

If exceeding more than one standard, the most strict one is highlighted.

Laboratory Qualifiers:

B- The same analytre is found in the associted blank.

 ${\bf J}$ - The identification of the analyte is acceptable; the reported value is an estimate.

J1 - Surrogate recovery limites have been exceeded; values are outside upper control limits.

J2 - Surrogate recovery limits have been exceeded; values are outside lower control limits.

B - The same analyte is found in the associated blank.

 ${\bf J3}$ - The associated batch QC was outside the establish quality control range for precision.

J4- The associated batch QC was outside the established quality control range for accuracy.

J5 - The sample matrix interfered with the ability to make any accurate determination; spike value is high.

J6: The sample matrix interfered with the ability to make any accurate determination; spike value is low

J7: Surrogate recovery cannot be used for control limit evaluation due to dilution

O1: The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

 $\ensuremath{\textbf{V}}$: The sample concentration is too high to evaluate accurate spike recoveries.

Eddy-Kirby Parcels, Clev	veland, Cuyaho	ga County, Ohi	ο			IA-01A						IA-02						IA	-03	
Sample ID (Depth ¹)		Aj	pplicable Standar	rds	B-105 (6-8) * ⁶	B-106 (3-5) * ⁶	B-106 (5-7) * ⁶	P4-IA02-SB01 (4-6)	Duplicate 1 (P4- IA02-SB01)	IA-2-01 (0-2) * ⁶	IA-2-01 (2-4) * ⁶	IA-2-02 (0-4) * ⁶	IA-2-02 (4-6) * ⁶	IA-2-02 (6-8) * ⁶	IA-2-03 (0-4) * ⁶	IA-02-03 (6-8)* ⁶	P4-IA03-SB01 (2-4)	P4-IA03- MW01 (0-2)	B-18 (8-10) * ⁶	B-19 (10-12) * ⁶
Collection Date		CDCS Residential	Commercial/	Construction/	12/11/2008	12/11/2008	12/11/2008	6/14/2023	6/14/2023	10/9/2008	10/9/2008	10/9/2008	10/9/2008	10/9/2008	10/9/2008	10/9/2008	6/14/2023	6/14/2023	5/25/2000	5/25/2000
Parameter	Units ²	Land Use ³	Industrial Land Use ⁴	Excavation Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Polynuclear Aromatic Hydrod	arbons-PAHs							-												
Anthracene	mg/kg	36,000	670,000	1,000,000	NT	NT	NT	<0.00753	<0.00760	ND	1.03	0.815	ND	ND						
Acenaphthene	mg/kg	7,200	1,000,000	290,000	NT	NT	NT	<0.00753	<0.00760	ND	0.28	0.394	ND	ND						
Acenaphthylene	mg/kg	7,200	130,000 ⁵	290,000 ⁵	NT	NT	NT	<0.00753	<0.00760	ND	0.27	0.0576	ND	ND						
Benzo(a)anthracene	mg/kg	23	610	9,600	ND	ND	ND	<0.00753	<0.00760	ND	1.51	1.14	ND	ND						
Benzo(a)pyrene	mg/kg	2.3	62	230	ND	ND	ND	<0.00753	<0.00760	ND	0.888	0.621	ND	ND						
Benzo(b)fluoranthene	mg/kg	23	620	10,000	ND	ND	0.092	<0.00753	<0.00760	ND	1.05	0.78	ND	ND						
Benzo(g,h,i)perylene	mg/kg	3,600	67,000 ⁵	430,000 ⁵	NT	NT	NT	<0.00753	<0.00760	ND	0.43	0.286	ND	ND						
Benzo(k)fluoranthene	mg/kg	230	6,200	100,000	ND	ND	ND	<0.00753	<0.00760	ND	0.411	0.289	ND	ND						
Chrysene	mg/kg	2,300	62,000	1,000,000	ND	ND	0.12	<0.00753	<0.00760	ND	ND	0.225	ND	ND	ND	ND	2.19	1.21	ND	ND
Dibenz(a,h)anthracene	mg/kg	2.3	62	1,000	ND	ND	ND	<0.00753	<0.00760	ND	0.118	0.0796	ND	ND						
Fluoranthene	mg/kg	4,800	89,000	170,000	NT	NT	NT	<0.00753	<0.00760	ND	ND	0.663	ND	ND	ND	ND	3.91	3.58	ND	ND
Fluorene	mg/kg	4,800	89,000	580,000	NT	NT	NT	<0.00753	<0.00760	ND	1.55	1.13	ND	ND						
Indeno(1,2,3-cd)pyrene	mg/kg	23	620	10,000	ND	0.0097	0.06	<0.00753	<0.00760	ND	0.529	0.365	ND	ND						
Naphthalene	mg/kg	96	420	560	ND	ND	0.27	<0.0251	<0.0253	ND	0.99	0.68	ND	ND						
Phenanthrene	mg/kg	36,000	670,000 ⁵	1,000,000 5	NT	NT	NT	<0.00753	<0.00760	ND ND	ND	0.339	ND	ND	ND	ND	5.75	4.68	ND	ND
Pyrene	mg/kg	3,600	67,000	430,000	NT	NT	NT	<0.00753	<0.00760	ND	ND	0.474	ND	ND	ND	ND	2.97	2.49	ND	ND
1-Methylnaphthalene	mg/kg	350	390	390	NT	NT	NT	<0.0251	<0.0253	ND	0.362	0.244	ND	ND						
2-Methylnaphthalene	mg/kg	480	8,900	5,800	NT	NT	NT	< 0.0251	<0.0253	ND	ND	ND	ND	0.313	ND	ND	0.387	0.358	ND	ND
Total Petroleum Hydrocarbor	ns-TPHs																. <u>.</u>			<u>.</u>
C6-C12 Hydrocarbons	mg/kg	10,000	10,000	10,000	1,100	17,000	1,100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		
C10-C20 Hydrocarbons	mg/kg	10,000	10,000	10,000	2.1	370	990	NT 🗸	NT	NT	NT NT	NT	NT	NT NT	NT	NT	NT	NT		
C20-C34 Hydrocarbons	mg/kg	20,000	20,000	20,000	4.4	3,200	4,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	74 900 7	7 590 7
C6-C7 Hydrocarbons					NT	NT	NT	NT	NT	2.2	ND	ND	1.12	772	ND	15.7	NT	NT	74,900	7,500
C7-C16 Hydrocarbons		N	No Current Standards			NT	NT	NT	NT	81.9	ND	14.3	6.63	211	ND	ND	NT	NT]	
C16-C32 Hydrocarbons					NT	NT	NT	NT	NT	20.9	ND	248	57.7	1,120	ND	ND	NT	NT		

Notes

FT - Feet below grade
 mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Commercial/Industrial Land Use.

4. Ohio VAP GDCS Construction/Excavation Activities.

5. Supplemental standards from the Ohio VAP CIDARS

6. Samples analyzed for SVOCs by SW8270B

7. TPH T/R by E418.1

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample.

ND : No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

Eddy-Kirby Parcels, Cle	veland, Cuyaho	ga County, Ohi	0			IA-03		IA-04	IA-05	IA-06			IA-07				IA-08		IA	-09
Sample ID (Depth ¹)		Aj	oplicable Standar	rds	B-20 (0-2) * ⁶	B-21 (10-12) * ⁶	B-22 (8-10) *	P4-IA04- MW01 (2-4)	P4-IA05-SB01 (0-5)	P4-IA06-SB01 (4-6)	P4-IA07- MW01 (2-4)	IA-7-01 (0-2) *	IA-7-01 (2-4) *	IA-7-02 (0-2) *	IA-7-02 (2-4) *	B-15 (0-2) *	IA-8-01 (0-2) *	IA-8-02 (0-2) *	P4-IA09-SB01 (0-2)	B-23 (8-10) *
Collection Date		CDCS Posidontial	Commercial/	Construction/	5/25/2000	5/25/2000	5/25/2000	6/14/2023	6/19/2023	6/13/2023	6/14/2023	11/13/2008	11/13/2008	11/13/2008	11/13/2008	3/28/2000	11/13/2008	11/13/2008	6/13/2023	5/24/2000
Parameter	Units ²	Land Use ³	Industrial Land Use ⁴	Excavation Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Polynuclear Aromatic Hydro	carbons-PAHs					•	•		-		-	•				-	•			
Anthracene	mg/kg	36,000	670,000	1,000,000	ND	ND	ND	0.0211	0.00992	<0.00761	<0.00705	NT	NT	NT	NT	ND	ND	ND	0.0742	ND
Acenaphthene	mg/kg	7,200	1,000,000	290,000	ND	ND	ND	0.0051 J	0.0107	<0.00761	<0.00705	NT	NT	NT	NT	ND	ND	ND	0.0179	ND
Acenaphthylene	mg/kg	7,200	130,000 ⁵	290,000 ⁵	ND	ND	ND	0.0034 J	< 0.00714	<0.00761	<0.00705	NT	NT	NT	NT	ND	ND	ND	0.0427	ND
Benzo(a)anthracene	mg/kg	23	610	9,600	ND	ND	ND	0.0537	0.0106	<0.00761	<0.00705	NT	NT	NT	NT	0.48	ND	ND	0.16	ND
Benzo(a)pyrene	mg/kg	2.3	62	230	ND	ND	ND	0.0368	0.00739	<0.00761	<0.00705	NT	NT	NT	NT	0.605	ND	ND	0.323	ND
Benzo(b)fluoranthene	mg/kg	23	620	10,000	ND	ND	ND	0.071	0.0145	<0.00761	<0.00705	NT	NT	NT	NT	0.517	ND	ND	0.423	ND
Benzo(g,h,i)perylene	mg/kg	3,600	67,000 ⁵	430,000 ⁵	ND	ND	ND	0.042	0.00452 J	<0.00761	<0.00705	NT	NT	NT	NT	0.321	ND	ND	0.236	ND
Benzo(k)fluoranthene	mg/kg	230	6,200	100,000	ND	ND	ND	0.0246	0.0058 J	<0.00761	<0.00705	NT	NT	NT	NT	ND	ND	ND	0.122	ND
Chrysene	mg/kg	2,300	62,000	1,000,000	ND	ND	ND	0.0533	0.00906	<0.00761	<0.00705	NT	NT	NT	NT	0.667	ND	ND	0.441	ND
Dibenz(a,h)anthracene	mg/kg	2.3	62	1,000	ND	ND	ND	0.00829	<0.00714	<0.00761	<0.00705	NT	NT	NT	NT	ND	ND	ND	0.0537	ND
Fluoranthene	mg/kg	4,800	89,000	170,000	ND	ND	ND	0.171	0.0426	<0.00761	0.00507 J	NT	NT	NT	NT	0.303	ND	0.447	0.306	ND
Fluorene	mg/kg	4,800	89,000	580,000	ND	ND	ND	0.00465 J	0.0113	<0.00761	<0.00705	NT	NT	NT	NT	ND	ND	ND	0.0302	ND
Indeno(1,2,3-cd)pyrene	mg/kg	23	620	10,000	ND	ND	ND	0.0428	0.00571 J	<0.00761	<0.00705	NT	NT	NT	NT	0.326	ND	ND	0.275	ND
Naphthalene	mg/kg	96	420	560	ND	ND	ND	0.0102 J	0.0525	<0.0254	<0.0235	NT	NT	NT	NT	ND	ND	ND	0.0871	ND
Phenanthrene	mg/kg	36,000	670,000 ⁵	1,000,000 5	ND	ND	ND	0.174	0.0562	<0.00761	0.0049 J	NT	NT	NT	NT	ND	ND	0.249	0.231	ND
Pyrene	mg/kg	3,600	67,000	430,000	ND	ND	ND	0.113	0.0311	<0.00761	0.00402 J	NT	NT	NT	NT	0.606	ND	0.336	0.668	ND
1-Methylnaphthalene	mg/kg	350	390	390	ND	ND	ND	<0.0214	0.0146 J	<0.0254	<0.0235	NT	NT	NT	NT	ND	ND	ND	0.0526	ND
2-Methylnaphthalene	mg/kg	480	8,900	5,800	ND	ND	ND	0.00555 J	0.0333	<0.0254	<0.0235	NT	NT	NT	NT	ND	ND	ND	0.0807	ND
Total Petroleum Hydrocarbo	ns-TPHs																			
C6-C12 Hydrocarbons	mg/kg	10,000	10,000	10,000				NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT
C10-C20 Hydrocarbons	mg/kg	10,000	10,000	10,000				NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT
C20-C34 Hydrocarbons	mg/kg	20,000	20,000	20,000	400.7	7 44 7	40.000.7	NT	NT	NT	NT	NT	NT	NT	NT	4007	NT	NT	NT	NT
C6-C7 Hydrocarbons					120	/.41	12,900	NT	NT	NT	NT	ND	ND	ND	ND	1 122	NT	NT	NT	NT
C7-C16 Hydrocarbons	T	N	No Current Standards					NT	NT	NT	NT	6.67	5.6	31.8	ND	1	6.33	ND	NT	NT
C16-C32 Hydrocarbons	<u> </u>							NT	NT	NT	NT	197	116	1,940	ND	<u> </u>	294	5.6	NT	NT

Notes

FT - Feet below grade
 mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Commercial/Industrial Land Use.

4. Ohio VAP GDCS Construction/Excavation Activities.

5. Supplemental standards from the Ohio VAP CIDARS

6. Samples analyzed for SVOCs by SW8270B

7. TPH T/R by E418.1

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample.

ND : No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

Eddy-Kirby Parcels, Clev	veland, Cuyaho	ga County, Ohi	0								IA-09							IA-10	IA	-11
Sample ID (Depth ¹)		Aj	oplicable Standar	ds	B-24 (8-10) *	B-25 (0-2) *	B-26 (4-6) *	B-27 (4-6) *	B-28 (2-4) *	IA-9-B-01 (0-2) *	IA-9-B-01 (4-6) *	IA-9-B-02 (0-2) *	IA-9-B-02 (2-4) *	IA-9-B-03 (2-4) *	IA-9-B-03 (4-6) *	IA-9-B-04 (0-2) *	IA-9-B-04 (6-8) *	P4-IA10-SB01 (2-4)	P4-IA11- MW01 (0-2)	B-08 (8-10) * ⁶
Collection Date		GDCS Residential	Commercial/	Construction/	5/24/2000	5/24/2000	5/24/2000	5/24/2000	5/24/2000	6/16/2004	6/16/2004	6/16/2004	6/16/2004	6/16/2004	6/16/2004	6/16/2004	6/16/2004	6/13/2023	6/13/2023	3/24/2000
Parameter	Units ²	Land Use ³	Industrial Land Use ⁴	Excavation Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Polynuclear Aromatic Hydroc	carbons-PAHs																	-		
Anthracene	mg/kg	36,000	670,000	1,000,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.267	0.221	ND
Acenaphthene	mg/kg	7,200	1,000,000	290,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.128	0.129	ND
Acenaphthylene	mg/kg	7,200	130,000 ⁵	290,000 ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0172	<0.00717	ND
Benzo(a)anthracene	mg/kg	23	610	9,600	ND	ND	ND	ND	ND	ND	ND	ND	ND	20.5	ND	ND	ND	0.56	0.718	ND
Benzo(a)pyrene	mg/kg	2.3	62	230	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.1	ND	ND	ND	0.524	0.67	ND
Benzo(b)fluoranthene	mg/kg	23	620	10,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.58	ND	ND	ND	0.602	0.761	ND
Benzo(g,h,i)perylene	mg/kg	3,600	67,000 ⁵	430,000 ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.44	ND	ND	ND	0.286	0.377	ND
Benzo(k)fluoranthene	mg/kg	230	6,200	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.224	0.269	ND
Chrysene	mg/kg	2,300	62,000	1,000,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.73	ND	ND	ND	0.445	0.631	ND
Dibenz(a,h)anthracene	mg/kg	2.3	62	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0695	0.0828	ND
Fluoranthene	mg/kg	4,800	89,000	170,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.83	ND	ND	ND	1.32	1.73	ND
Fluorene	mg/kg	4,800	89,000	580,000	ND	ND	ND	ND	ND 🧹	ND	0.129	0.0969	ND							
Indeno(1,2,3-cd)pyrene	mg/kg	23	620	10,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.63	ND	ND	ND	0.35	0.44	ND
Naphthalene	mg/kg	96	420	560	ND	3.3	ND	ND	ND	ND	ND	ND	ND	2.92	ND	ND	ND	0.198	0.228	ND
Phenanthrene	mg/kg	36,000	670,000 ⁵	1,000,000 5	ND	0.554	ND	ND	ND	ND	ND	ND	ND	5.95	ND	ND	ND	1.13	1.3	ND
Pyrene	mg/kg	3,600	67,000	430,000	ND	ND	ND	ND	ND	ND	4.15	ND	ND	5.24	ND	ND	ND	0.998	1.46	ND
1-Methylnaphthalene	mg/kg	350	390	390	ND	ND	ND	ND 🔰	ND	ND	ND	ND	NT	NT	ND	ND	ND	0.14	0.252	ND
2-Methylnaphthalene	mg/kg	480	8,900	5,800	ND	2.13	ND	ND	ND	ND	ND	ND	NT	NT	ND	ND	ND	0.204	0.351	ND
Total Petroleum Hydrocarbor	ns-TPHs																			
C6-C12 Hydrocarbons	mg/kg	10,000	10,000	10,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C10-C20 Hydrocarbons	mg/kg	10,000	10,000	10,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C20-C34 Hydrocarbons	mg/kg	20,000	20,000	20,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C6-C7 Hydrocarbons					NT	NT	NT	NT	NT	ND	NT	NT								
C7-C16 Hydrocarbons	1	N	lo Current Standard	ds	NT	NT	NT	NT	NT	81.6	1,780	122	104	38.60	5.14	37.50	4.18	NT	NT	ND ⁷
C16-C32 Hydrocarbons					NT	NT	NT	NT	NT	4,090	39,100	10,600	13,300	297	39.80	1,020.00	12.40	NT	NT	

Notes

FT - Feet below grade
 mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Commercial/Industrial Land Use.

4. Ohio VAP GDCS Construction/Excavation Activities.

5. Supplemental standards from the Ohio VAP CIDARS

6. Samples analyzed for SVOCs by SW8270B

7. TPH T/R by E418.1

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample.

ND : No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

Eddy-Kirby Parcels, Cle	eveland, Cuyaho	oga County, Ohi	o		IA-11										IA12					IA-13
Sample ID (Depth ¹)		Aj	pplicable Standaı	rds	B-13 (4-5) * ⁶	B-14 (4-6) * ⁶	B-IA-11-01 (0-2) *	B-IA-11-01 (4-6) *	B-IA-11-02 (0-2) *	B-IA-11-02 (6-7) *	P4-IA12-SB01 (4-6)	B-06 (8-10) * ⁶	B-07 (8-10) * ⁶	B-09 (8-10) * ⁶	B-10 (4-6) * ⁶	B-11 (4-6) * ⁶	B-16 (8-10) * ⁶	B-IA-12-01 (0-2) *	B-IA-12-01 (4-6) *	B-38 (13-15) *
Collection Date		GDCS Posidential	Commercial/	Construction/	3/28/2000	3/28/2000	6/11/2004	6/11/2004	6/11/2004	6/11/2004	6/13/2023	3/24/2000	3/24/2000	3/24/2000	3/28/2000	3/28/2000	3/29/2000	6/11/2004	6/11/2004	5/30/2001
Parameter	Units ²	Land Use ³	Industrial Land Use ⁴	Excavation Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Polynuclear Aromatic Hydro	carbons-PAHs				-	•	•				-	•		•	•					
Anthracene	mg/kg	36,000	670,000	1,000,000	0.267	ND	NT	NT	ND	ND	2.47	ND	ND	ND	ND	4.29	ND	NT	NT	ND
Acenaphthene	mg/kg	7,200	1,000,000	290,000	ND	ND	NT	NT	ND	ND	0.117	ND	ND	ND	ND	1.49	ND	NT	NT	ND
Acenaphthylene	mg/kg	7,200	130,000 ⁵	290,000 5	ND	ND	NT	NT	ND	ND	<0.00719	ND	ND	ND	ND	ND	ND	NT	NT	ND
Benzo(a)anthracene	mg/kg	23	610	9,600	0.921	ND	NT	NT	ND	ND	0.285	ND	ND	ND	ND	ND	ND	NT	NT	ND
Benzo(a)pyrene	mg/kg	2.3	62	230	1.23	ND	NT	NT	ND	ND	<0.719	ND	ND	ND	ND	6.27	0.228	NT	NT	ND
Benzo(b)fluoranthene	mg/kg	23	620	10,000	1.54	ND	NT	NT	1.3	ND	0.236 J	ND	ND	ND	ND	7.39	0.232	NT	NT	ND
Benzo(g,h,i)perylene	mg/kg	3,600	67,000 ⁵	430,000 5	0.974	ND	NT	NT	ND	ND	<0.719	ND	ND	ND	ND	2.78	ND	NT	NT	ND
Benzo(k)fluoranthene	mg/kg	230	6,200	100,000	0.757	ND	NT	NT	ND	ND	<0.719	ND	ND	ND	ND	2.89	ND	NT	NT	ND
Chrysene	mg/kg	2,300	62,000	1,000,000	1.23	ND	NT	NT	ND	ND	0.44	ND	ND	ND	ND	ND	ND	NT	NT	ND
Dibenz(a,h)anthracene	mg/kg	2.3	62	1,000	ND	ND	NT	NT	ND	ND	<0.719	ND	ND	ND	ND	0.65	ND	NT	NT	ND
Fluoranthene	mg/kg	4,800	89,000	170,000	2.22	ND	NT	NT	1.86	ND	0.435	ND	0.266	ND	ND	13.4	0.377	NT	NT	ND
Fluorene	mg/kg	4,800	89,000	580,000	ND	ND	NT	NT	ND 🧹	ND	0.225	ND	ND	ND	ND	1.69	ND	NT	NT	ND
Indeno(1,2,3-cd)pyrene	mg/kg	23	620	10,000	0.779	ND	NT	NT	ND	ND	<0.719	ND	ND	ND	ND	3.3	ND	NT	NT	ND
Naphthalene	mg/kg	96	420	560	ND	ND	NT	NT	ND	ND	0.069	ND	ND	ND	ND	0.266	ND	NT	NT	ND
Phenanthrene	mg/kg	36,000	670.000 ⁵	1,000,000 5	1.59	ND	NT	NT	1.59	ND	<0.00719	ND	0.283	ND	ND	14.7	ND	NT	NT	ND
Pyrene	mg/kg	3,600	67,000	430,000	1.91	ND	NT	NT	1.55	ND	0.768	ND	0.227	ND	ND	15.8	0.277	NT	NT	ND
1-Methylnaphthalene	mg/kg	350	390	390	ND	ND	NT	NT	ND	ND	0.141	ND	ND	ND	ND	ND	ND	NT	NT	ND
2-Methylnaphthalene	mg/kg	480	8,900	5,800	ND	ND	NT	NT	ND	ND	<0.0240	ND	ND	ND	ND	ND	ND	NT	NT	ND
Total Petroleum Hydrocarbo	ons-TPHs																			
C6-C12 Hydrocarbons	mg/kg	10,000	10,000	10,000	NT	NT	NT	NT	NT	NT	41.2	NT	NT	NT	NT	NT	NT	NT	NT	NT
C10-C20 Hydrocarbons	mg/kg	10,000	10,000	10,000	NT	NT	NT	NT	NT	NT	1750	NT	NT	NT	NT	NT	NT	NT	NT	NT
C20-C34 Hydrocarbons	mg/kg	20,000	20,000	20,000	NT	NT	NT	NT	NT	NT	7940	NT	NT	NT	NT	NT	NT	NT	NT	NT
C6-C7 Hydrocarbons							ND	ND	ND	ND	NT							ND	ND	NT
C7-C16 Hydrocarbons		N	lo Current Standar	712 7	9430 7	21	19.9	28.2	203	NT	ND 7	ND 7	ND 7	17,700 ⁷	2,090 7	61.1 ⁷	150	71.5	NT	
C16-C32 Hydrocarbons						488	178	461	926	NT							13,200	4,350	NT	

Notes

FT - Feet below grade
 mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Commercial/Industrial Land Use.

4. Ohio VAP GDCS Construction/Excavation Activities.

5. Supplemental standards from the Ohio VAP CIDARS

6. Samples analyzed for SVOCs by SW8270B

7. TPH T/R by E418.1

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample.

ND : No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

Eddy-Kirby Parcels, Cle	veland, Cuyaho	oga County, Ohi	ο		IA-13								IA	-14						
Sample ID (Depth ¹)		Aj	pplicable Standa	rds	B-39 (14-16) *	B-40 (13-15) *	P4-IA14-SB01 (0-2)	P4-IA14-SB02 (2-4)	P4-IA14-SB03 (0-2)	B-41 (0-2) *	B-41A (0-2) *	B-41A (2-4) *	B-41A (4-6) *	B-42 (0-2) *	B-42A (0-2) *	B-42A (2-4) *	B-42A (4-6) *	B-43 (0-2) *	B-44 (0-2) *	B-44A (0-2) *
Collection Date		CDCS Regidential	Commercial/	Construction/	5/30/2001	5/30/2001	6/13/2023	6/13/2023	6/19/2023	5/30/2001	6/10/2004	6/10/2004	6/10/2004	5/30/2001	6/10/2004	6/10/2004	6/10/2004	5/30/2001	5/30/2001	6/10/2004
Parameter	Units ²	Land Use ³	Industrial Land Use ⁴	Excavation Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Polynuclear Aromatic Hydro	carbons-PAHs	-				•				•	•	•	•	•	•	•	•	•	•	
Anthracene	mg/kg	36,000	670,000	1,000,000	ND	ND	0.722	5.46	0.504	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
Acenaphthene	mg/kg	7,200	1,000,000	290,000	ND	ND	0.183	2.38	0.112	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
Acenaphthylene	mg/kg	7,200	130,000 ⁵	290,000 ⁵	ND	ND	0.357	1.53	0.574	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
Benzo(a)anthracene	mg/kg	23	610	9,600	ND	ND	2.58	11.3	2.63	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
Benzo(a)pyrene	mg/kg	2.3	62	230	ND	ND	2.86	11.2	2.12	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
Benzo(b)fluoranthene	mg/kg	23	620	10,000	ND	ND	3.13	13.5	2.72	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
Benzo(g,h,i)perylene	mg/kg	3,600	67,000 ⁵	430,000 ⁵	ND	ND	1.73	4.42	1.12	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
Benzo(k)fluoranthene	mg/kg	230	6,200	100,000	ND	ND	1.22	3.34	1.25	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
Chrysene	mg/kg	2,300	62,000	1,000,000	ND	ND	2.14	9.22	1.71	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
Dibenz(a,h)anthracene	mg/kg	2.3	62	1,000	ND	ND	0.421	1.21	0.322	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
Fluoranthene	mg/kg	<u>4,800</u>	89,000	170,000	ND	ND	5.69	29.2	3.57	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
Fluorene	mg/kg	4,800	89,000	580,000	ND	ND	0.233	2.95	0.0941	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
Indeno(1,2,3-cd)pyrene	mg/kg	23	620	10,000	ND	ND	2.13	8.38	1.53	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
Naphthalene	mg/kg	96	420	560	ND	ND	1.05	2.34	0.167	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
Phenanthrene	mg/kg	36,000	670,000 ⁵	1,000,000 5	ND	ND	2.6	23.1	1.36	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
Pyrene	mg/kg	3,600	67,000	430,000	ND	ND	4.1	18.8	2.89	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
1-Methylnaphthalene	mg/kg	350	390	390	ND	ND	0.933	0.897	0.143	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
2-Methylnaphthalene	mg/kg	480	8,900	5,800	ND	ND	1.29	1.39	0.208	ND	NT	NT	NT	ND	NT	NT	NT	ND	ND	NT
Total Petroleum Hydrocarbo	ons-TPHs																			
C6-C12 Hydrocarbons	mg/kg	10,000	10,000	10,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C10-C20 Hydrocarbons	mg/kg	10,000	10,000	10,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C20-C34 Hydrocarbons	mg/kg	20,000	20,000	20,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C6-C7 Hydrocarbons					NT	NT	NT	NT	NT		ND	ND	ND		ND	ND	ND			ND
C7-C16 Hydrocarbons	1	N	lo Current Standar	rds	NT	NT	NT	NT	NT	61,200 ⁷	346	11.8	14.3	43,800 ⁷	322	326	411	65.3 ⁷	1,470 ⁷	30.9
C16-C32 Hydrocarbons					NT	NT	NT	NT	NT]	27,500	141	55		19,400	28,800	27,200]		8,890

Notes

FT - Feet below grade
 mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Commercial/Industrial Land Use.

4. Ohio VAP GDCS Construction/Excavation Activities.

5. Supplemental standards from the Ohio VAP CIDARS

6. Samples analyzed for SVOCs by SW8270B

7. TPH T/R by E418.1

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample.

ND : No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

Eddy-Kirby Parcels, Clev	veland, Cuyaho	ga County, Ohi	0							IA	-14						General	Coverage	IA	-51
Sample ID (Depth ¹)		Aj	oplicable Standar	ds	B-IA-14-01 (0-2) *	B-IA 14-1 (2-4) *	B-IA 14-1 (4-6) *	B-IA 14-2 (0-2) *	B-IA 14-2 (2-4) *	B-IA 14-2 (4-6) *	B-IA 14-3 (0-2) *	B-IA 14-3 (2-4) *	B-IA 14-3 (4-6) *	B-IA 14-4 (0-2) *	B-IA 14-4 (2-4) *	B-IA 14-4 (4-6) *	P4-GC-SB01 (0-2)	P4-GC-MW01 (2-4)	P5-IA51-SB01 (2-4)	P5-IA51-SB02 (2-4)
Collection Date		GDCS Residential	Commercial/	Construction/	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/19/2023	6/19/2023	6/22/2023	6/22/2023
Parameter	Units ²	Land Use ³	Industrial Land Use ⁴	Excavation Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Polynuclear Aromatic Hydroc	arbons-PAHs							•				•	•	•	•			•		•
Anthracene	mg/kg	<u>36,000</u>	670,000	1,000,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	1.51	<0.00692	1.71	5
Acenaphthene	mg/kg	7,200	1,000,000	290,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	1.13	0.0166	0.681	2.08
Acenaphthylene	mg/kg	7,200	130,000 ⁵	290,000 ⁵	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.248	0.00587 J	0.13	0.327
Benzo(a)anthracene	mg/kg	23	610	9,600	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	1.61	0.0688	5.32	20.2
Benzo(a)pyrene	mg/kg	2.3	62	230	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.969	0.036	5.33	17.3
Benzo(b)fluoranthene	mg/kg	23	620	10,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	1.11	0.0881	6.03	19.9
Benzo(g,h,i)perylene	mg/kg	3,600	67,000 ⁵	430,000 ⁵	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.382	0.0521	3.57	9.06
Benzo(k)fluoranthene	mg/kg	230	6,200	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.439	0.028	2.3	7.27
Chrysene	mg/kg	2,300	62,000	1,000,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	1.14	0.113	5.17	18.2
Dibenz(a,h)anthracene	mg/kg	2.3	62	1,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.1	0.00709	0.798	3.58
Fluoranthene	mg/kg	4,800	89,000	170,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	5.56	0.368	12.1	44.9
Fluorene	mg/kg	4,800	89,000	580,000	NT	NT	NT	NT	NT 🧹	NT	2.22	0.0261	0.566	1.78						
Indeno(1,2,3-cd)pyrene	mg/kg	23	620	10,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.516	0.0489	4.6	12.8
Naphthalene	mg/kg	96	420	560	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	5.97	0.0726	0.237	1.15
Phenanthrene	mg/kg	36,000	670,000 ⁵	1,000,000 5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	9.23	0.446	5.72	18.5
Pyrene	mg/kg	3,600	67,000	430,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	4.06	0.255	8.07	31.7
1-Methylnaphthalene	mg/kg	350	390	390	NT	NT	NT	NT 🔰	NT	1.75	0.0297	0.194	0.511							
2-Methylnaphthalene	mg/kg	480	8,900	5,800	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	3.26	0.0468	0.23	0.682
Total Petroleum Hydrocarbor	ns-TPHs																			
C6-C12 Hydrocarbons	mg/kg	10,000	10,000	10,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.118	<0.115
C10-C20 Hydrocarbons	mg/kg	mg/kg <u>10,000</u> 10,000 10,000 10,000 10,000				NT	NT	NT	44.2 J	396 V										
C20-C34 Hydrocarbons	mg/kg	20,000	20,000	20,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	468	1720 V
C6-C7 Hydrocarbons					ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT
C7-C16 Hydrocarbons		N	No Current Standards			15	17.8	19.1	10.8	10.3	297	50.4	8.31	517	298	9.16	NT	NT	NT	NT
C16-C32 Hydrocarbons	-C32 Hydrocarbons						64.4	565.0	57.1	39.7	27,400.0	4,780.0	62.9	50,800.0	27,900.0	80.3	NT	NT	NT	NT

Notes

FT - Feet below grade
 mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Commercial/Industrial Land Use.

4. Ohio VAP GDCS Construction/Excavation Activities.

5. Supplemental standards from the Ohio VAP CIDARS

6. Samples analyzed for SVOCs by SW8270B

7. TPH T/R by E418.1

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample.

ND : No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

Eddy-Kirby Parcels, Clev		IA	-52	IA	-53	IA	-54	IA-55	IA	-56	IA	-57		General	Coverage				
Sample ID (Depth ¹)		Aŗ	oplicable Standar	ds	P5-IA52-SB01 (2-4)	P5-IA52-SB02 (2-4)	P5-IA53-SB01 (2-4)	P5-IA53- MW01 (4-6)	P5-IA54-SB01 (2-4)	P5-IA54- MW01 (14-16)	P5-IA55-SB01 (4-6)	P5-IA56-SB01 (2-4)	P5-IA56- MW01 (6-8)	P5-IA57-SB01 (2-4)	P5-IA57- MW01 (2-4)	P5-GC-SB01 (2-4)	P5-GC-SB02 (2-4)	P5-GC-SB03 (6-8)	P5-GC-MW01 (8-10)
Collection Date		GDCS Residential	Commercial/	Construction/	6/21/2023	6/21/2023	6/20/2023	6/20/2023	6/21/2023	6/21/2023	6/22/2023	6/22/2023	6/21/2023	6/19/2023	6/20/2023	6/20/2023	6/22/2023	6/22/2023	6/21/2023
Parameter	Units ²	Land Use ³	Industrial Land Use ⁴	Excavation Activities ⁵	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Polynuclear Aromatic Hydrod	arbons-PAHs					•			-			-		-	•		•	•	
Anthracene	mg/kg	36,000	670,000	1,000,000	<0.00706	<0.00716	0.152	0.761	0.144	0.468	<0.00747	1.67	0.141	0.0477	0.534	<0.00655	0.355	0.0109	<0.00795
Acenaphthene	mg/kg	7,200	1,000,000	290,000	0.141	<0.00716	0.0614	0.423	0.0405	1.4	<0.00747	1.42	0.0113	0.0227	0.157	<0.00655	0.2	0.00472 J	<0.00795
Acenaphthylene	mg/kg	7,200	130,000 ⁵	290,000 ⁵	<0.00706	<0.00716	0.0228	0.0518	0.0176	<0.00731	<0.00747	0.224	0.00696 J	0.00354 J	0.0519 J	<0.00655	0.0159	<0.00756	<0.00795
Benzo(a)anthracene	mg/kg	23	610	9,600	0.0657	0.008	0.728	1.89	0.779	0.16	<0.00747	4.78	0.17	0.124	2.96	0.0178	0.904	0.0334	<0.00795
Benzo(a)pyrene	mg/kg	2.3	62	230	0.0452	0.00635 J	0.571	1.51	0.719	0.0937	<0.00747	3.22	0.118	0.0975	2.74	0.0194	0.832	0.035	<0.00795
Benzo(b)fluoranthene	mg/kg	23	620	10,000	0.0571	0.00843	0.619	1.67	0.828	0.046	<0.00747	3.69	0.148	0.105	3.19	0.0276	1.02	0.0494	<0.00795
Benzo(g,h,i)perylene	mg/kg	3,600	67,000 ⁵	430,000 ⁵	0.0205	0.00458 J	0.347	0.856	0.385	0.0764	<0.00747	2.14	0.084	0.0464	1.72	0.0146	0.477	0.0235	<0.00795
Benzo(k)fluoranthene	mg/kg	230	6,200	100,000	0.0204	0.0028 J	0.23	0.617	0.313	<0.00731	<0.00747	1.46	0.0492	0.0434	1.04	0.00973	0.34	0.016	<0.00795
Chrysene	mg/kg	2,300	62,000	1,000,000	0.0437	0.00655 J	0.718	1.69	0.542	0.191	<0.00747	3.84	0.112	0.0923	2.73	0.0199	0.771	0.0377	<0.00795
Dibenz(a,h)anthracene	mg/kg	2.3	62	1,000	0.00614 J	<0.00716	0.0876	0.214	0.0928	0.0132	<0.00747	0.431	0.0154	0.0118	0.373	0.00309 J	0.117	0.00514 J	<0.00795
Fluoranthene	mg/kg	4,800	89,000	170,000	0.169	0.0124	1.22	3.79	1.47	0.328	0.00301 J	11.6	0.476	0.264	6.52	0.0284	2.08	0.0738	<0.00795
Fluorene	mg/kg	4,800	89,000	580,000	0.119	<0.00716	0.0598	0.413	0.0424	2.12	<0.00747	1.13	0.0225	0.0183	0.128	<0.00655	0.159	0.00608 J	<0.00795
Indeno(1,2,3-cd)pyrene	mg/kg	23	620	10,000	0.0294	0.00505 J	0.367	1.04	0.523	0.0249	<0.00747	2.55	0.105	0.0645	1.99	0.015	0.592	0.0273	<0.00795
Naphthalene	mg/kg	96	420	560	0.0189 J	0.0722	0.0252	0.297	0.0128 J	10.3	< 0.0249	1.15	0.0747	0.0166 J	0.125 J	<0.0218	0.0655	0.0521	< 0.0265
Phenanthrene	mg/kg	36,000	670,000 ⁵	1,000,000 5	0.557	0.033	0.472	2.89	0.582	4.35	<0.00747	9.99	0.289	0.197	1.78	0.00743	1.87	0.0533	<0.00795
Pyrene	mg/kg	3,600	67,000	430,000	0.155	0.0119	1.22	3.03	1.15	1.23	0.00289 J	10.4	0.343	0.185	5.06	0.0282	1.87	0.0737	<0.00795
1-Methylnaphthalene	mg/kg	350	390	390	0.161	0.0648	0.0239 J	0.149	0.013 J	16.7	<0.0249	0.489	0.072	0.0192 J	0.134 J	<0.0218	0.0388	0.0416	<0.0265
2-Methylnaphthalene	mg/kg	480	8,900	5,800	0.0322	0.097	0.0181 J	0.197	0.0161 J	14.1	<0.0249	0.818	0.108	0.0213 J	0.159 J	<0.0218	0.0403	0.0515	<0.0265
Total Petroleum Hydrocarbon	ns-TPHs								-			-		-					
C6-C12 Hydrocarbons	mg/kg	10,000	10,000	10,000	0.258	<0.119	0.104 J	0,139	0.126	2580	NT	NT	NT	0.0901 J	0.0759 J	NT	NT	NT	NT
C10-C20 Hydrocarbons	mg/kg	10,000	10,000	10,000	15.8	8.84	55.6 J	62.7	22.4	7700	NT	NT	NT	<239	<1080	NT	NT	NT	NT
C20-C34 Hydrocarbons	mg/kg	20,000	20,000	20,000	8.62	16.2	325	163	179	6450	NT	NT	NT	97.7 J	809 J	NT	NT	NT	NT
C6-C7 Hydrocarbons					NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C7-C16 Hydrocarbons		N	No Current Standards			NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C16-C32 Hydrocarbons					NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

Notes

FT - Feet below grade
 mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Commercial/Industrial Land Use.

4. Ohio VAP GDCS Construction/Excavation Activities.

5. Supplemental standards from the Ohio VAP CIDARS

6. Samples analyzed for SVOCs by SW8270B

7. TPH T/R by E418.1

NE: No standard established by applicable agency; **NT**: Parameter not analyzed for this sample.

ND : No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

Table 4C: Summary of PCBs and RCRA 8 Metals in Soil

Eddy-Kirby Parc	els, Cleveland,	Cuyahoga Co	ounty, Ohio			IA	-02		IA	-03							IA-04			
Sample ID (Depth ¹)			VAP	Standards		P4-IA02-SB01 (4-6)	Duplicate 1 (P4 IA02-SB01)	P4-IA03-SB01 (2-4)	P4-IA03- MW01 (0-2)	B-30 (0-2) *	B-30 (2-4) *	P4-IA04- MW01 (2-4)	B-34 (0-2) *	B-31 (2-4) *	B-34 (4-6) *	B-34 (6-8) *	B-34 (8-10) *	B-35 (0-2) *	B-35 (2-4) *	B-35 (4-6) *
Collection Date		GDCS	Commercial/	Construction/	Cuyahoga County	6/14/2023	6/14/2023	6/14/2023	6/14/2023	12/5/2000	12/5/2000	6/14/2023	5/31/2001	5/31/2001	5/31/2001	5/31/2001	5/31/2001	5/31/2001	5/31/2001	5/31/2001
Parameter	Units ²	Residential Land Use ³	Industrial Land Use ⁴	Activities Land Use ⁵	Background Levels ⁶	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Resource Conserva	tion and Recovery	Act (RCRA) 8 M	letals				•	•	•		•		•	•	•	•	•	•		
Arsenic	nic mg/kg <u>14</u> <u>100</u> <u>760</u> <u>24</u> <u>13.1</u> <u>19.6</u> <u>4.99</u> <u>5.34</u> <u>10.6</u> <u>9.35</u> <u>4.94</u> <u>20.2</u> <u>14.7</u> <u>18</u> <u>18.8</u> ND <u>9.67</u> <u>18.4</u> Im mg/kg <u>30,000</u> <u>760,000</u> <u>350,000</u> <u>98.9</u> <u>101</u> <u>112</u> <u>53.4</u> <u>77.6</u> <u>218</u> <u>89.6</u> <u>35.3</u> <u>75.6</u> <u>26.1</u> <u>36.8</u> <u>23.3</u> <u>19.9</u> <u>43.8</u> <u>51.9</u>														6.97					
Barium	mg/kg	30,000	760,000	350,000	98.9	101	112	53.4	77.6	218	89.6	35.3	75.6	26.1	36.8	23.3	19.9	43.8	51.9	50.3
Cadmium	mg/kg	140	3,300	710	0.834	0.153 J	0.0612 J	0.123 J	0.111 J	ND	ND	0.285 J	ND	ND	ND	ND	ND	ND	ND	ND
Chromium	mg/kg	27	240	1,300	21.1	21.2	18.7	9.33	13.6	9.63	5.65	10.2	9.44	13.4	12.9	6.83	6.23	6.86	14.8	11.9
Lead	mg/kg	400	800	400	51.7	12.8	19.6	16.1	14.3	10.5	13.4	7.5	23.1	10.7	17.3	8.13	7.77	29.5	14.6	9.67
Selenium	mg/kg	780	23,000	12,000	0.943	<2.51	<2.53	<2.42	1.39	ND	ND	<2.14	ND	ND	ND	ND	ND	ND	ND	ND
Silver	mg/kg	780	23,000	12,000	NA	<1.26	<1.27	<1.21	<1.18	ND	ND	<1.07	ND	ND	ND	ND	ND	ND	ND	ND
Mercury	mg/kg	3.1	3.1	3.1	0.097	0.0466 J	0.0378 J	0.0385 J	0.0521 J	ND	ND	0.0307 J	ND	ND	ND	ND	ND	ND	ND	ND
Polychlorinated Bip	henyls-PCBs																			
PCB 1016	mg/kg	8.2	150	290	NA	<0.0427	<0.0430	<0.0823	<0.0800	NT	NT	NT	ND	NT	NT	NT	NT	ND	NT	NT
PCB 1221	mg/kg	3.9	22	300	NA	<0.0427	<0.0430	<0.0823	<0.0800	NT	NT	NT	ND	NT	NT	NT	NT	ND	NT	NT
PCB 1232	mg/kg	3.4	18	230	NA	<0.0427	<0.0430	<0.0823	<0.0800	NT	NT	NT	ND	NT	NT	NT	NT	ND	NT	NT
PCB 1242	mg/kg	4.6	27	400	NA	<0.0427	<0.0430	<0.0823	<0.0800	NT	NT	NT	ND	NT	NT	NT	NT	ND	NT	NT
PCB 1248	mg/kg	4.5	26	390	NA	<0.0213	<0.0215	<0.0411	<0.0400	NT	NT	NT	ND	NT	NT	NT	NT	ND	NT	NT
PCB 1254	mg/kg	NA	<0.0213	<0.0215	<0.0411	<0.0400	NT	NT	NT	ND	NT	NT	NT	NT	ND	NT	NT			
PCB 1260	mg/kg	4.8	28	450	NA	<0.0213	<0.0215	<0.0411	<0.0400	NT	NT	NT	ND	NT	NT	NT	NT	ND	NT	NT
Notes																				

1. FT - Feet below grade

2. mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Residential Land Use.

4. Ohio VAP GDCS Commercial/Industrial Land Use.

5. Ohio VAP GDCS Construction/Excavation Activities.

6. Ohio EPA Division of Environmental Reponse and Revitalization Background Metal Soil Concentrations for Cuyahoga County, Ohio

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

* : Samples collected by HzW

: Boring locations excavated and removed from the Property by HzW

Laboratory Qualifiers:

J: The identification of the analyte is acceptable; the reported value is an estimate.

B: The same analyte is found in the associated blank.

E: The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)

J3: The associated batch QC was outside the established quality control range for precision.

J4: The associated batch QC was outside the established quality control range for accuracy

J6: The sample matrix interfered with the ability to make any accurate determination; spike value is low

J7: Surrogate recovery cannot be used for control limit evaluation due to dilution

O1: The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

Table 4C: Summary of PCBs and RCRA 8 Metals in Soil Eddy-Kirby Parcels, Cleveland, Cuvahoga County, Ohio

Eddy-Kirby Parcels	s, Cleveland,	Cuyahoga Co	ounty, Ohio												IA-04					
Sample ID (Depth ¹)			VAP	Standards		B-35 (6-8) *	B-35 (8-10) *	IA-4-01 (0-2) *	IA-4-01 (2-4) *	IA-4-01 (4-6) *	IA-4-01 (6-8) *	IA-4-01 (8-10) *	IA-4-02 (0-2) *	IA-4-02 (2-4) *	IA-4-02 (4-6) *	IA-4-02 (6-8) *	IA-4-02 (8-10) *	IA-4-03 (0-2) *	IA-4-03 (2-4) *	IA-4-03 (4-6) *
Collection Date		GDCS	Commercial/	Construction/ Excavation	Cuyahoga County	5/31/2001	5/31/2001	9/25/2008	9/25/2008	9/25/2008	9/25/2008	9/25/2008	9/25/2008	9/25/2008	9/25/2008	9/25/2008	9/25/2008	9/25/2008	9/25/2008	9/25/2008
Parameter	Units ²	Residential	Industrial Land Use ⁴	Activities Land Use ⁵	Background Levels ⁶	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Resource Conservatio	on and Recovery	Act (RCRA) 8 M	letals				·					·	•		·					
Arsenic	mg/kg 14 100 760 24 19.1 ND 6.06 12.5 9.01 9.07 ND ND 20.6 ND 12.2 mg/kg 30,000 760,000 350,000 98.9 60.9 11.6 36 53.7 64.2 49.5 13.8 36.5 72.5 30.2 40.7															ND	6.89	16.9	8.13	
Barium	mg/kg	30,000	760,000	350,000	98.9	60.9	11.6	36	53.7	64.2	49.5	13.8	36.5	72.5	30.2	40.7	33	45.11	95.1	44.5
Cadmium	mg/kg	140	3,300	710	0.834	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.903	ND	ND	ND	ND	ND
Chromium	mg/kg	27	240	1,300	21.1	17.4	3.62	10.5	23.7	14.9	14.7	6.32	10.5	17.7	13.7	12.8	8.94	7.35	14.3	14.5
Lead	mg/kg	400	800	400	51.7	11.8	3.25	14	8.79	9.33	9.71	5.74	12.8	15.4	6.96	11.2	6.55	20	20.6	9.49
Selenium	mg/kg	780	23,000	12,000	0.943	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT
Silver	mg/kg	780	23,000	12,000	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT
Mercury	mg/kg	3.1	3.1	3.1	0.097	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.114	ND	ND
Polychlorinated Biphe	enyls-PCBs																			
PCB 1016	mg/kg	8.2	150	290	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1221	mg/kg	3.9	22	300	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1232	mg/kg	3.4	18	230	NA	NT	NT	NT	NT 🍢	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1242	mg/kg	4.6	27	400	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1248	mg/kg	4.5	26	390	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1254	mg/kg	2.3	28	84	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1260	mg/kg	4.8	28	450	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Notes																				

1. FT - Feet below grade

2. mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Residential Land Use.

4. Ohio VAP GDCS Commercial/Industrial Land Use.

5. Ohio VAP GDCS Construction/Excavation Activities.

6. Ohio EPA Division of Environmental Reponse and Revitalization Background Metal Soil Concentrations for Cuyahoga County, Ohio

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

* : Samples collected by HzW

: Boring locations excavated and removed from the Property by HzW

Laboratory Qualifiers:

J: The identification of the analyte is acceptable; the reported value is an estimate.

B: The same analyte is found in the associated blank.

E: The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)

J3: The associated batch QC was outside the established quality control range for precision.

J4: The associated batch QC was outside the established quality control range for accuracy

J6: The sample matrix interfered with the ability to make any accurate determination; spike value is low

J7: Surrogate recovery cannot be used for control limit evaluation due to dilution

O1: The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

0.

Table 4C: Summary of PCBs and RCRA 8 Metals in Soil Eddy-Kirby Parcels, Cleveland, Cuyahoga County, Obio

Eddy-Kirby Parce	Is, Cleveland,	Cuyahoga Co	ounty, Ohio					IA	-05									IA-05		
Sample ID (Depth ¹)			VAP	Standards		IA-4-03 (6-8) *	IA-4-03 (8-10) *	P4-IA05-SB01 (0-2)	B-36 (0-2) *	B-36 (2-4) *	B-36 (4-6) *	B-37 (0-2) *	B-37 (2-4) *	IA-5-01 (0-2) *	IA-5-01 (2-4) *	IA-5-01 (4-6) *	IA-5-01 (6-8) *	IA-5-01 (8-10) *	IA-5-02 (0-2) *	IA-5-02 (2-4) *
Collection Date		GDCS	Commercial/	Construction/	Cuyahoga County	9/25/2008	9/25/2008	6/19/2023	5/31/2001	5/31/2001	5/31/2001	5/31/2001	5/31/2001	9/25/2008	9/25/2008	9/25/2008	9/25/2008	9/25/2008	9/25/2008	9/25/2008
Parameter	Units ²	Residential	Industrial Land Use ⁴	Activities Land Use ⁵	Background Levels ⁶	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Resource Conservati	ion and Recovery	Act (RCRA) 8 M	letals		-11		•	•	•	1		•	1	1	1	1	•			
Arsenic	mg/kg	14	100	760	24	8.92	5.09	2.59	5.98	33.9	23.8	ND	ND	12.5	10.2	15.3	15.2	8.9	9.57	11.5
Barium	mg/kg	30,000	760,000	350,000	98.9	29.8	31.7	35.3	39.4	59.7	81.4	34.8	20.8	49.5	62.7	54.9	78.8	17.2	67.8	51.5
Cadmium	mg/kg	140	3,300	710	0.834	ND	ND	0.0811 J	ND	3.56	1.62	ND	ND	ND	0.556	ND	0.655	ND	ND	ND
Chromium	mg/kg	27	240	1,300	21.1	7.98	8.07	6.65	8.97	16.1	15.5	6.23	6.7	16.3	12.4	14.7	16.8	7.84	11.9	14.6
Lead	mg/kg	400	800	400	51.7	7.23	6.33	26.3	57.9	65.3	15.7	21.6	7.59	11.8	16	9.47	13.9	8.8	80.2	101
Selenium	mg/kg	780	23,000	12,000	0.943	NT	NT	<2.38	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	NT
Silver	mg/kg	780	23,000	12,000	NA	NT	NT	<1.19	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	NT
Mercury	mg/kg	3.1	3.1	3.1	0.097	ND	ND	0.0217 J	ND	ND	ND	0.199	ND	ND	ND	ND	ND	ND	ND	ND
Polychlorinated Biph	enyls-PCBs																			
PCB 1016	mg/kg	8.2	150	290	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1221	mg/kg	3.9	22	300	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1232	mg/kg	3.4	18	230	NA	NT	NT	NT	NT 🦳	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1242	mg/kg	4.6	27	400	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1248	mg/kg	4.5	26	390	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1254	CB 1254 mg/kg 2.3 28 84 NA NT N									NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1260	mg/kg	4.8	28	450	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	
Notes																				

1. FT - Feet below grade

2. mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Residential Land Use.

4. Ohio VAP GDCS Commercial/Industrial Land Use.

5. Ohio VAP GDCS Construction/Excavation Activities.

6. Ohio EPA Division of Environmental Reponse and Revitalization Background Metal Soil Concentrations for Cuyahoga County, Ohio

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

* : Samples collected by HzW

: Boring locations excavated and removed from the Property by HzW

Laboratory Qualifiers:

J: The identification of the analyte is acceptable; the reported value is an estimate.

B: The same analyte is found in the associated blank.

E: The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)

J3: The associated batch QC was outside the established quality control range for precision.

J4: The associated batch QC was outside the established quality control range for accuracy

J6: The sample matrix interfered with the ability to make any accurate determination; spike value is low

J7: Surrogate recovery cannot be used for control limit evaluation due to dilution

O1: The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

0.

Table 4C: Summary of PCBs and RCRA 8 Metals in Soil Eddy-Kirby Parcels, Cleveland, Cuyahoga County, Ohio

Eddy-Kirby Parce	els, Cleveland, (Cuyahoga Co	ounty, Ohio			-						IA	-05				IA-06			
Sample ID (Depth ¹)			VAP	Standards		IA-5-02 (4-6) *	IA-5-02 (6-8) *	IA-5-02 (8-10) *	IA-5-03 (0-2) *	IA-5-03 (2-4) *	IA-5-03 (4-6) *	IA-5-03 (6-8) *	IA-5-03 (8-10) *	P4-IA06-SB01 (4-6)	IA-6-01 (0-2) *	IA-6-01 (2-4) *	IA-6-02 (0-2) *	IA-6-02 (2-4) *	IA-6-03 (0-2) *	IA-6-03 (2-4) *
Collection Date		GDCS	Commercial/	Construction/ Excavation	Cuyahoga County	9/25/2008	9/25/2008	9/25/2008	9/25/2008	9/25/2008	9/25/2008	9/25/2008	9/25/2008	6/13/2023	10/9/2008	10/9/2008	10/9/2008	10/9/2008	10/9/2008	10/3/2008
Parameter	Units ²	Residential Land Use ³	Industrial Land Use ⁴	Activities Land Use ⁵	Background Levels ⁶	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Resource Conservat	ion and Recovery	Act (RCRA) 8 N	letals			-		•				·	•				•		•	•
Arsenic	mg/kg	14	100	760	24	15.2	9.4	7.45	5.86	6.39	9.25	9.25	ND	21	10.3	11.2	ND	10.2	5.31	5.11
Barium	mg/kg	30,000	760,000	350,000	98.9	92	45.6	60.8	50.1	19.6	64	60.4	19.6	101	38.2	79.6	38.9	45.2	33.4	24.6
Cadmium	mg/kg	140	3,300	710	0.834	ND	ND	ND	1.18	ND	0.632	0.724	ND	0.353 J	ND	ND	ND	ND	ND	ND
Chromium	mg/kg	27	240	1,300	21.1	13.4	12.1	9.7	7.8	8.88	16.9	17.8	9.45	22.8	11.3	20.3	6.93	13.5	6.87	6.33
Lead	mg/kg	400	800	400	51.7	49	65.8	149	40.4	6.93	12.8	13.6	8.18	14.2	18.7	10.3	16.8	10.4	8.72	6.06
Selenium	mg/kg	780	23,000	12,000	0.943	NT	NT	NT	NT	NT	NT	NT	NT	1.08 J	ND	ND	ND	ND	ND	ND
Silver	mg/kg	780	23,000	12,000	NA	NT	NT	NT	NT	NT	NT	NT	NT	<1.27	ND	ND	ND	ND	ND	ND
Mercury	mg/kg	3.1	3.1	3.1	0.097	ND	ND	0.125	0.212	ND	ND	ND	ND	0.0528	ND	ND	ND	ND	ND	ND
Polychlorinated Bipl	nenyls-PCBs																			
PCB 1016	mg/kg	8.2	150	290	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1221	mg/kg	3.9	22	300	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1232	mg/kg	3.4	18	230	NA	NT	NT	NT	NT 🔪	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1242	mg/kg	4.6	27	400	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1248	mg/kg	4.5	26	390	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1254	mg/kg	2.3	28	84	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1260	mg/kg	4.8	28	450	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Notes																				

1. FT - Feet below grade

2. mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Residential Land Use.

4. Ohio VAP GDCS Commercial/Industrial Land Use.

5. Ohio VAP GDCS Construction/Excavation Activities.

6. Ohio EPA Division of Environmental Reponse and Revitalization Background Metal Soil Concentrations for Cuyahoga County, Ohio

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

* : Samples collected by HzW

I : Boring locations excavated and removed from the Property by HzW

Laboratory Qualifiers:

J: The identification of the analyte is acceptable; the reported value is an estimate.

B: The same analyte is found in the associated blank.

E: The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)

J3: The associated batch QC was outside the established quality control range for precision.

J4: The associated batch QC was outside the established quality control range for accuracy

J6: The sample matrix interfered with the ability to make any accurate determination; spike value is low

J7: Surrogate recovery cannot be used for control limit evaluation due to dilution

O1: The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

Ô,

Table 4C: Summary of PCBs and RCRA 8 Metals in Soil

Eddy-Kirby Parce	els, Cleveland,	Cuyahoga Co	ounty, Ohio			IA-07	IA-08			IA	\-09								I.F	4-09
Sample ID (Depth ¹)			VAP	Standards		P4-IA07- MW01 (0-2)	B-15 (0-2) *	P4-IA09-SB01 (0-2)	B-23 (8-10) *	B-24 (8-10) *	B-25 (0-2) *	B-26 (4-6) * ŧ	B-27 (4-6) *	B-28 (2-4) *	B-45 (0-2) *	B-45 (2-4) *	B-46 (0-2) *	B-46 (2-4) *	IA-9-B-01 (0- 2) *	IA-9-B-01 (4- 6) *
Collection Date		GDCS	Commercial/	Construction/	Cuyahoga County	6/14/2023	3/28/2000	6/13/2023	5/24/2000	5/24/2000	5/24/2000	5/24/2000	5/24/2000	5/24/2000	5/30/2001	5/30/2001	5/30/2001	5/30/2001	6/16/2004	6/16/2004
Parameter	Units ²	Residential Land Use ³	Industrial Land Use ⁴	Activities Land Use ⁵	Background Levels ⁶	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Resource Conserva	tion and Recovery	Act (RCRA) 8 M	letals				•	-			•	•	•		•	•	•			
Arsenic	e Conservation and Recovery Act (RCRA) 8 Metals														11.9	9.28	35.2	25		
Barium	mg/kg	30,000	760,000	350,000	98.9	116	NT	656	6.08	12.5	62.4	6,570	3.89	276ŧ	206.00	42.90	71.10	49.70	1,390.00	601.00
Cadmium	mg/kg	140	3,300	710	0.834	0.383 J	NT	1.22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium	mg/kg	27	240	1,300	21.1	18.5	NT	24.6	1.83	14.8	4.91	25.1	18.8	117	5.63	10.1	8.84	3.61	1,160	25.60
Lead	mg/kg	400	800	400	51.7	17.8	NT	88.1	3.78	3.02	8.36	181	ND	478ŧ	15.3	19.8	16.1	4.18	361	97.1
Selenium	mg/kg	780	23,000	12,000	0.943	1.01J	NT	<2.30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	mg/kg	780	23,000	12,000	NA	<1.17	NT	<1.15	ND	ND	ND	ND	ND	ND	1.83	ND	ND	0.618	ND	ND
Mercury	mg/kg	3.1	3.1	3.1	0.097	0.052	NT	0.11	ND	ND	ND	ND	ND	0.105	ND	ND	ND	ND	NT	NT
Polychlorinated Bip	henyls-PCBs																			
PCB 1016	mg/kg	8.2	150	290	NA	<0.0399	ND	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1221	mg/kg	3.9	22	300	NA	<0.0399	ND	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1232	mg/kg	3.4	18	230	NA	<0.0399	ND	NT	NT 🔪	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1242	mg/kg	4.6	27	400	NA	<0.0399	ND	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1248	mg/kg	4.5	26	390	NA	<0.0200	ND	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1254	mg/kg	2.3	28	84	NA	<0.0200	ND	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1260	mg/kg	4.8	28	450	NA	<0.0200	ND	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Notes																				

1. FT - Feet below grade

2. mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Residential Land Use.

4. Ohio VAP GDCS Commercial/Industrial Land Use.

5. Ohio VAP GDCS Construction/Excavation Activities.

6. Ohio EPA Division of Environmental Reponse and Revitalization Background Metal Soil Concentrations for Cuyahoga County, Ohio

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

* : Samples collected by HzW

: Boring locations excavated and removed from the Property by HzW

Laboratory Qualifiers:

J: The identification of the analyte is acceptable; the reported value is an estimate.

B: The same analyte is found in the associated blank.

E: The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)

J3: The associated batch QC was outside the established quality control range for precision.

J4: The associated batch QC was outside the established quality control range for accuracy

J6: The sample matrix interfered with the ability to make any accurate determination; spike value is low

J7: Surrogate recovery cannot be used for control limit evaluation due to dilution

O1: The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

0.

Table 4C: Summary of PCBs and RCRA 8 Metals in Soil Eddy-Kirby Parcels, Cleveland, Cuvahoga County, Ohio

Eddy-Kirby Parcels,	by Parcels, Cleveland, Cuyahoga County, Ohio												IA-10						IA-11	
Sample ID (Depth ¹)			VAP	Standards		IA-9-B-02 (0- 2) * ŧ	IA-9-B-02 (2- 4) *	IA-9-B-03 (4- 6) *	IA-9-B-04 (0- 2) * ŧ	IA-9-B-04 (6- 8) *	P4-IA10-SB01 (2-4)	B-29 (2-4) *	IA-10-B-01 (0- 2) *	IA-10-B-01 (6- 8) *	B-IA-10-02 (0- 2) *	P4-IA11- MW01 (0-2)	B-13 (4-5) *	B-14 (4-6) *	B-IA-11-01 (0- 2) *	B-IA-11-01 (4- 6) *
Collection Date		GDCS	Commercial/	Construction/ Excavation	Cuyahoga County	6/16/2004	6/16/2004	6/16/2004	6/16/2004	6/16/2004	6/13/2023	5/25/2000	6/16/2004	6/16/2004	6/11/2004	6/13/2023	3/28/2000	3/28/2000	6/11/2004	6/11/2004
Parameter	Units ²	Residential	Industrial Land Use ⁴	Activities Land Use ⁵	Background Levels ⁶	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Resource Conservation	and Recovery	Act (RCRA) 8 N	letals																	
Arsenic	mg/kg	14	100	760	24	15.1	ND	8.75	15.4	9.5	ND	13.5	43.4	24	7.22	20.9	7.64	10.2	11.5	
Barium	mg/kg	30,000	760,000	350,000	98.9	74.80	12.10	60.80	1,930.00	47.70	1,060	3,800	578	65	888	160	2,110	5,110	443	370
Cadmium	mg/kg	140	3,300	710	0.834	ND	ND	ND	0.541	ND	3.01	3.95	ND	0.901	ND	0.222 J	0.693	1.52	ND	ND
Chromium	mg/kg	27	240	1,300	21.1	33.30	18.70	13.90	109.00	25.90	<u>58.7</u>	453	28.5	13.8	366	18.9	554	69.7	34.7	13
Lead	mg/kg	400	800	400	51.7	389	49.9	12.5	546	9.23	2530	652	235	16.7	358	17.6	316	414	82.2	24.9
Selenium	mg/kg	780	23,000	12,000	0.943	ND	ND	ND	ND	ND	2.29	ND	ND	ND	ND	<2.39	ND	ND	ND	ND
Silver	mg/kg	780	23,000	12,000	NA	ND	ND	ND	ND	ND	4.43	1.6	ND	ND	ND	<1.19	1.63	1.03	ND	ND
Mercury	mg/kg	3.1	3.1	3.1	0.097	NT	NT	NT	NT	NT	0.543	ND	NT	NT	NT	0.0583	ND	ND	NT	NT
Polychlorinated Biphen	yls-PCBs																			
PCB 1016	mg/kg	8.2	150	290	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1221	mg/kg	3.9	22	300	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1232	mg/kg	3.4	18	230	NA	NT	NT	NT	NT 🔪	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1242	mg/kg	4.6	27	400	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1248	mg/kg	4.5	26	390	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1254	mg/kg	2.3	28	84	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1260	mg/kg	4.8	28	450	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Notes																				

1. FT - Feet below grade

2. mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Residential Land Use.

4. Ohio VAP GDCS Commercial/Industrial Land Use.

5. Ohio VAP GDCS Construction/Excavation Activities.

6. Ohio EPA Division of Environmental Reponse and Revitalization Background Metal Soil Concentrations for Cuyahoga County, Ohio

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

* : Samples collected by HzW

: Boring locations excavated and removed from the Property by HzW

Laboratory Qualifiers:

J: The identification of the analyte is acceptable; the reported value is an estimate.

B: The same analyte is found in the associated blank.

E: The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)

J3: The associated batch QC was outside the established quality control range for precision.

J4: The associated batch QC was outside the established quality control range for accuracy

J6: The sample matrix interfered with the ability to make any accurate determination; spike value is low

J7: Surrogate recovery cannot be used for control limit evaluation due to dilution

O1: The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

 \diamond

Table 4C: Summary of PCBs and RCRA 8 Metals in Soil Eddy-Kirby Parcels, Cleveland, Cuvahoga County, Ohio

Eddy-Kirby Parce	ls, Cleveland,	Cuyahoga Co	ounty, Ohio			-						IA	-14		-					
Sample ID (Depth ¹)			VAP	Standards		B-IA-11-02 (0- 2) *	B-IA-11-02 (6- 7) *	P4-IA14-SB01 (0-2)	P4-IA14-SB02 (2-4)	P4-IA14-SB03 (0-2)	B-41 (0-2) * ŧ	B-41 (2-4) *	B-42 (0-2) * ŧ	B-42 (2-4) *	B-42A (2-4) *	B-42A (4-6) *	B-43 (2-4) *	B-44 (0-2) *	B-IA-14-1 (0- 2) * ŧ	B-IA 14 -1 (2- 4) *
Collection Date		GDCS	Commercial/	Construction/	Cuyahoga County	, 6/11/2004	6/11/2004	6/13/2023	6/13/2023	6/19/2023	5/30/2001	5/30/2001	5/30/2001	5/30/2001	6/10/2004	6/10/2004	5/30/2001	5/30/2001	6/10/2004	6/10/2004
Parameter	Units ²	Residential	Industrial Land Use ⁴	Activities Land Use ⁵	Background Levels ⁶	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Resource Conservati	on and Recovery	Act (RCRA) 8 M	Netals		"		•		•	•	•		•	•	•	•	•	•		
Arsenic	mg/kg	14	100	760	24	20.7	17.8	NT	NT	NT	5.46	ND	29.7	10.1	<u>15.1</u>	22.9	5.76	39.1	81.9	8.76
Barium	mg/kg	<u>30,000</u>	760,000	350,000	98.9	768	1,450	NT	NT	NT	164	65	149	43.2	2,550	419	6.65	16.60	120.00	18.50
Cadmium	mg/kg	140	3,300	710	0.834	ND	ND	NT	NT	NT	2.44	ND	2.51	ND	1.97	0.775	ND	ND	1.95	ND
Chromium	mg/kg	27	240	1,300	21.1	394	380	NT	NT	NT	46.1	9.39	265	6.99	334	546	37.6	5.64	23.9	10.2
Lead	mg/kg	400	800	400	51.7	475	273	305	57.4	384	522	73.1	1,540	25	14,200	325	7.04	46.00	919.00	10.30
Selenium	mg/kg	780	23,000	12,000	0.943	ND	ND	NT	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	mg/kg	780	23,000	12,000	NA	ND	ND	NT	NT	NT	ND	ND	1.67	ND	ND	ND	ND	ND	ND	ND
Mercury	mg/kg	<u>3.1</u>	3.1	3.1	0.097	NT	NT	NT	NT	NT	ND	ND	ND	ND	NT	NT	ND	ND	NT	NT
Polychlorinated Biph	enyls-PCBs																			
PCB 1016	mg/kg	8.2	150	290	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1221	mg/kg	3.9	22	300	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1232	mg/kg	3.4	18	230	NA	NT	NT	NT	NT 🔪	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1242	mg/kg	4.6	27	400	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1248	mg/kg	4.5	26	390	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1254	mg/kg	2.3	28	84	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1260	mg/kg	4.8	28	450	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Notes																				

1. FT - Feet below grade

2. mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Residential Land Use.

4. Ohio VAP GDCS Commercial/Industrial Land Use.

5. Ohio VAP GDCS Construction/Excavation Activities.

6. Ohio EPA Division of Environmental Reponse and Revitalization Background Metal Soil Concentrations for Cuyahoga County, Ohio

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

* : Samples collected by HzW

: Boring locations excavated and removed from the Property by HzW

Laboratory Qualifiers:

J: The identification of the analyte is acceptable; the reported value is an estimate.

B: The same analyte is found in the associated blank.

E: The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)

J3: The associated batch QC was outside the established quality control range for precision.

J4: The associated batch QC was outside the established quality control range for accuracy

J6: The sample matrix interfered with the ability to make any accurate determination; spike value is low

J7: Surrogate recovery cannot be used for control limit evaluation due to dilution

O1: The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

O,

Table 4C: Summary of PCBs and RCRA 8 Metals in Soil

Eddy-Kirby Parcels	s, Cleveland,	Cuyahoga Co	ounty, Ohio						IA-14							General	Coverage	1/	A-51	IA
Sample ID (Depth ¹)			VAP	Standards		B-IA 14-1 (4-6 *) B-IA 14-2 (0-2) *	B-IA 14-2 (2-4) *) B-IA 14-2 (4-6 *) B-IA 14-3 (0-2 * ŧ) B-IA 14-3 (2-4 *) B-IA 14-3 (4-6 *) B-IA 14-4 (0-2 * †) B-IA 14-4 (2-4) *) B-IA 14-4 (4-6) *	P4-GC-SB01 (0-2)	P4-GC-MW01 (2-4)	P5-IA51-SB01 (2-4)	P5-IA51-SB02 (2-4)	P5-IA52-SB01 (2-4)
Collection Date		GDCS	Commercial/	Construction/	Cuyahoga County	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/10/2004	6/19/2023	6/19/2023	6/22/2023	6/22/2023	6/21/2023
Parameter	Units ²	Residential	Industrial Land Use ⁴	Activities Land Use ⁵	Background Levels ⁶	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Resource Conservatio	on and Recovery	Act (RCRA) 8 M	letals					·		·		·				-				
Arsenic	mg/kg	14	100	760	24	13.8	ND	ND	ND	16.1	ND	ND	89.8	6.64	6.29	6.27	8.55	NT	NT	NT
Barium	mg/kg	30,000	760,000	350,000	98.9	39.60	16.70	6.70	7.21	41.70	5.94	12.90	211.00	25.90	19.40	52.5	73.1	NT	NT	NT
Cadmium	mg/kg	140	3,300	710	0.834	ND	ND	ND	ND	0.802	ND	ND	ND	ND	ND	0.42 J	0.17 J	NT	NT	NT
Chromium	mg/kg	27	240	1,300	21.1	10.1	6.8	4.52	3.47	12.2	3.3	3.37	50.8	9	7.62	8.9	8.76	NT	NT	NT
Lead	mg/kg	400	800	400	51.7	8.29	16.50	5.42	3.91	364.00	3.85	4.23	678.00	43.20	15.00	26.3	21.4 01	NT	NT	NT
Selenium	mg/kg	780	23,000	12,000	0.943	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<2.50 J3 J6	<2.31	NT	NT	NT
Silver	mg/kg	780	23,000	12,000	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<1.25	<1.15	NT	NT	NT
Mercury	mg/kg	3.1	3.1	3.1	0.097	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.0844	0.0314 J	NT	NT	NT
Polychlorinated Biphe	enyls-PCBs																			
PCB 1016	mg/kg	8.2	150	290	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	< 0.0383	< 0.0393	<0.0400
PCB 1221	mg/kg	3.9	22	300	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.0383	< 0.0393	<0.0400
PCB 1232	mg/kg	3.4	18	230	NA	NT	NT	NT	NT 🥎	NT	NT	NT	NT	NT	NT	NT	NT	<0.0383	< 0.0393	<0.0400
PCB 1242	mg/kg	4.6	27	400	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.0383	< 0.0393	<0.0400
PCB 1248	mg/kg	4.5	26	390	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.0192	<0.0196	<0.0200
PCB 1254	mg/kg	2.3	28	84	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.0192	<0.0196	<0.0200
PCB 1260	mg/kg	4.8	28	450	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.076	0.532	<0.0200
Notes																				
1. FT - Feet below grade																				

2. mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Residential Land Use.

4. Ohio VAP GDCS Commercial/Industrial Land Use.

5. Ohio VAP GDCS Construction/Excavation Activities.

6. Ohio EPA Division of Environmental Reponse and Revitalization Background Metal Soil Concentrations for Cuyahoga County, Ohio

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

* : Samples collected by HzW

: Boring locations excavated and removed from the Property by HzW

Laboratory Qualifiers:

J: The identification of the analyte is acceptable; the reported value is an estimate.

B: The same analyte is found in the associated blank.

E: The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)

J3: The associated batch QC was outside the established quality control range for precision.

J4: The associated batch QC was outside the established quality control range for accuracy

J6: The sample matrix interfered with the ability to make any accurate determination; spike value is low

J7: Surrogate recovery cannot be used for control limit evaluation due to dilution

O1: The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

Table 4C: Summary of PCBs and RCRA 8 Metals in Soil

Eddy-Kirby Parcels,	Cleveland, (Cuyahoga Co	unty, Ohio			-52	IA	-53	IA-55	IA	-56	IA-	-57		General	Coverage	
Sample ID (Depth ¹)			VAP S	Standards		P5-IA52-SB02 (2-4)	P5-IA53-SB01 (2-4)	P5-IA53- MW01 (4-6)	P5-IA55-SB01 (4-6)	P5-IA56-SB01 (2-4)	P5-IA56- MW01 (6-8)	P5-IA57-SB01 (2-4)	P5-IA57- MW01 (2-4)	P5-GC-SB01 (2-4)	P5-GC-SB02 (2-4)	P5-GC-SB03 (6-8)	P5-GC-MW01 (8-10)
Collection Date		GDCS	Commercial/	Construction/	Cuyahoga County	6/21/2023	6/20/2023	6/20/2023	6/22/2023	6/22/2023	6/21/2023	6/19/2023	6/20/2023	6/20/2023	6/22/2023	6/22/2023	6/21/2023
Parameter	Units ²	Residential Land Use ³	Industrial Land Use ⁴	Activities Land Use ⁵	Background Levels ⁶	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Resource Conservation a	and Recovery	Act (RCRA) 8 M	letals														
Arsenic	mg/kg	14	100	760	24	NT	5.02	7.51	6.6	5.56	11.9	5.07	7.6	6.36	7.61	6.34	3.68
Barium	mg/kg	30,000	760,000	350,000	98.9	NT	40.6	75	58.5	89.5	86.2	33.9	133	24.4	38.1	68.5	14.5
Cadmium	mg/kg	140	3,300	710	0.834	NT	0.399 J	0.278 J	0.355 J	0.285 J	0.261	0.171 J	0.76	0.261 J	0.383 J	0.221 J	0.144
Chromium	mg/kg	27	240	1,300	21.1	NT	9.3	26	14.8	8.52	19	6.83	49.9	8.08	19.3	12.9	8.19
Lead	mg/kg	400	800	400	51.7	NT	64.2	74.1	10.5	26.2	253	26	404	14.2	177	119	7.23
Selenium	mg/kg	780	23,000	12,000	0.943	NT	<2.39	<2.29	<2.49	<2.22	<2.41	<2.39	<2.17	<2.18	<2.47	<2.52	<2.65
Silver	mg/kg	780	23,000	12,000	NA	NT	<1.20	<1.14	<1.25	<1.11	<1.20	<1.19	<1.08	<1.09	<1.24	<1.26	<1.32
Mercury	mg/kg	3.1	3.1	3.1	0.097	NT	0.0792	0.0473	0.0365 J	0.0306 J	0.0538	0.0976	0.0396 J	0.024 J	0.0851	0.0414 J	<0.0530
Polychlorinated Bipheny	ls-PCBs																
PCB 1016	mg/kg	8.2	150	290	NA	<0.0406	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1221	mg/kg	3.9	22	300	NA	<0.0406	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1232	mg/kg	3.4	18	230	NA	<0.0406	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1242	mg/kg	4.6	27	400	NA	<0.0406	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1248	mg/kg	4.5	26	390	NA	<0.0203	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1254	mg/kg	2.3	28	84	NA	<0.0203	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1260	B 1260 mg/kg <u>4.8 28 450 NA</u>							NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Notes	tes																

1. FT - Feet below grade

2. mg/kg = Milligrams per kilogram - parts per million (ppm)

3. Ohio VAP GDCS Residential Land Use.

4. Ohio VAP GDCS Commercial/Industrial Land Use.

5. Ohio VAP GDCS Construction/Excavation Activities.

6. Ohio EPA Division of Environmental Reponse and Revitalization Background Metal Soil Concentrations for Cuyahoga County, Ohio

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a detected concentration above a comparison standard.

* : Samples collected by HzW

: Boring locations excavated and removed from the Property by HzW

Laboratory Qualifiers:

J: The identification of the analyte is acceptable; the reported value is an estimate.

B: The same analyte is found in the associated blank.

E: The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)

J3: The associated batch QC was outside the established quality control range for precision.

J4: The associated batch QC was outside the established quality control range for accuracy

J6: The sample matrix interfered with the ability to make any accurate determination; spike value is low

J7: Surrogate recovery cannot be used for control limit evaluation due to dilution

O1: The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

Eddy-Kirby Parcels, Cleve	yahoga County, Ohio	1						IA	-01							IA-	01A		
Sample ID		VAP Standard	US EPA	P4-IA01-MW01	HzW-01 *	HzW-01 *	HzW-04 * ⁴	HzW-04 * ⁴	MW-1 * ⁴	MW-1 * ⁴	MW-2P* ⁴	MW-3 * ⁴	MW-3 * ⁴	MW-3P * ⁴	MW-3P * ⁴	HzW-02 *	HzW-02 *	HzW-02 *	HzW-03 *
Collection Date				6/28/2023	3/31/2000	6/8/2004	7/20/2000	6/8/2004	3/31/2000	3/14/2001	6/8/2004	3/31/2000	3/14/2001	7/1/2004	7/8/2004	3/31/2000	10/5/2000	11/2/2000	3/31/2000
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatile Organic Compounds -	VOCs		"				•	•			•	•		•	•		•		
Acetone	mg/l	14	40,200	<0.0500 J4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrolein	mg/l	0.000042	0.007	<0.0500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	mg/l	0.00052	0.144	<0.0100 J4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	mg/l	0.005	0.03	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	mg/l	NE	1.68	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	mg/l	0.08	0.017	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	mg/l	0.08	2.77	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	mg/l	0.0075	0.027	<0.00500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	mg/l	1	NIT	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	mg/l	2	NIT	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	mg/l	0.69	NIT	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	mg/l	0.005	0.008	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	mg/l	0.1	0.883	< 0.00100	ND	ND	ND			ND		ND	ND		ND	ND		ND	
Chlorodibromomethane	mg/l	0.08	NII	<0.00100	ND	ND	ND		ND ND	ND	ND ND	ND ND	ND			ND		ND	
Chloroethane	mg/l	21	NI1	<0.00500	ND	ND	ND	0.0139	ND	ND	ND	ND	ND	0.0087	0.00996	ND	ND	ND	ND
Chlorotorm	mg/i	0.00	0.015	<0.00500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	mg/l	0.19	0.300	<0.00250		ND	ND		ND	ND	ND		ND			ND		ND	
2-Chlorotoluene	mg/l					ND	ND						ND			ND			
1.2 Dibromo 3 Chloropropage	mg/l	0.0002	0.001	<0.00100 34					ND				ND						ND
1,2-Dibromoethane (EDB)	mg/l	0.0002	0.001	<0.00300	ND	ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	mg/l	0.0083	0.004	<0.00100		ND	ND			ND		ND	ND	ND	ND	ND	ND		ND
1 2-Dichlorobenzene	mg/l	0.6	6.54	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1.3-Dichlorobenzene	ma/l	NE	NIT	< 0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.4-Dichlorobenzene	ma/l	0.075	0.064	< 0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	ma/l	3.6	0.01	< 0.00500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	mg/l	0.028	0.135	<0.00100	ND	ND	ND	0.0195	ND	ND	ND	ND	ND	0.00875	0.0051	0.0519	0.471	0.341	ND
1,2-Dichloroethane (EDC)	mg/l	0.005	0.043	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	0.00542	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	mg/l	0.007	0.32	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0103	0.0527	0.0383	ND
cis-1,2-Dichloroethene	mg/l	0.07	NIT	0.000759 J	ND	ND	0.0143	0.00945	ND	ND	ND	0.0163	0.0306	0.00852	0.013	0.0799	0.466	0.29	0.0423
trans-1,2-Dichloroethene	mg/l	0.1	0.191	0.000798 J	ND	ND	0.0198	0.0152	ND	ND	ND	0.017	ND	0.0204	0.0358	ND	0.0215	ND	0.00846
1,2-Dichloropropane	mg/l	0.005	0.071	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	mg/l	NE	NIT	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	mg/l	0.37	NIT	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	mg/l	NE	0.1	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	mg/l	NE	0.1	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	mg/l	NE	NIT	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	mg/l	0.7	0.077	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloro-1,3-butadiene	mg/l	0.0014	0.008	<0.00100	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND		ND	ND
n-Hexane	mg/l	1.5	0.018	<0.0100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	mg/l	0.45	2.42	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-isopropyitoluene	mg/i	0.18	NI1	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	mg/i	0.005	4,300	<0.0100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	ing/i	0.005	8.1										ND			ND			
4-Methyl-2-pentanone (MIBK)	mg/l	6.3	1,190	<0.0100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
Methyl tert-butyl ether (MTBE)	mg/l	0.14	7.86	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	mg/l	0.0017	0.127	<0.00500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	mg/l	0.66	5.9	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	mg/l	0.1	22.2	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	mg/l	0.0057	0.092	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	mg/l	0.00076	0.075	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
I etrachloroethene	mg/l	0.005	0.122	<0.00100	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND		ND	ND
loluene	mg/l	1	39.2	<0.00100	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND

Eddy-Kirby Parcels, Cle	veland, Cu	iyahoga County, Ohio							IA	-01							IA-	01A	
Sample ID		VAP Standard	US EPA	P4-IA01-MW01	HzW-01 *	HzW-01 *	HzW-04 * ⁴	HzW-04 * ⁴	MW-1 * ⁴	MW-1 * ⁴	MW-2P* ⁴	MW-3 * ⁴	MW-3 * ⁴	MW-3P * ⁴	MW-3P * ⁴	HzW-02 *	HzW-02 *	HzW-02 *	HzW-03 *
Collection Date				6/28/2023	3/31/2000	6/8/2004	7/20/2000	6/8/2004	3/31/2000	3/14/2001	6/8/2004	3/31/2000	3/14/2001	7/1/2004	7/8/2004	3/31/2000	10/5/2000	11/2/2000	3/31/2000
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
1,2,3-Trichlorobenzene	mg/l	NE	NIT	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	mg/l	0.07	0.103	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	mg/l	0.2	0.0773	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0575	0.521	0.296	0.0226
1,1,2-Trichloroethane	mg/l	0.005	0.013	<0.00100	ND	ND	ND	ND	ND	/ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	mg/l	0.005	0.010	<0.00100	ND	ND	0.0134	ND	ND	ND	ND	ND	ND	ND	ND	0.268	1.66	0.999	0.0183
Trichlorofluoromethane	mg/l	5.2	NIT	<0.00500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	mg/l	0.0000075	0.052	<0.00250	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	mg/l	0.056	0.626	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	mg/l	0.06	0.439	<0.00100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	mg/l	0.002	0.002	<0.00100	ND	ND	ND	ND	ND	ND	ND	0.00857	0.0048	ND	ND	ND	ND	ND	ND
Xylenes, Total	mg/l	10	0.856	<0.00300	ND	ND	ND	ND 🗸	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes

1. mg/l = Milligrams per liter - parts per million (ppm).

2. Ohio EPA Generic Unrestricted Potable Use Standards (UPUS)

3. USEPA VISL for Residential Land Use

4. Monitoring wells adjacent to IAs due to access issues.

5. IA09 and IA14 overlap.

* : Wells installed by and samples collected by HzW

NSV: Not sufficiently volatile; NIT: No inhalation toxicity.

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a concentration above a comparison standard. If exceeding more than one standard, the most strict one is highlighted.

Laboratory Qualifiers:

J - The identification of the analyte is acceptable; the reported value is an estimate.

J3 - The associated batch QC was outside the establish quality control range for precision.

J4 - The associated batch QC was outside the established quality control range for accuracy.

Table 5A: Summary of V	OCs in Gr	oundwater				24.4		1					00					1	14.02
Eddy-Kirby Parcels, Clev	reland, Cu	iyanoga County, Onio			I-AI		1		1	1			-02	1		1			IA-03
Sample ID		VAP Standard	US EPA	HzW-03 *	HzW-03 *	MW-2 * ⁴	MW-2 * ⁴	WP-3 *	WP-3 *	WP-03 *	WP-03 *	WP-03 *	WP-03 *	WP-03 *	WP-3 *	WP-03 *	WP-3 *	P4-IA03-MW01	HzW-09 * ⁴
Collection Date				6/8/2004	7/1/2004	3/29/2000	3/14/2001	3/29/2000	10/5/2000	11/2/2000	6/10/2004	10/11/2007	11/8/2007	12/18/2007	1/15/2008	4/2/2008	8/18/2008	6/28/2023	7/20/2000
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatile Organic Compounds	- VOCs		u.		•		•			•	•	•	•	•		•	•		
Acetone	mg/l	14	40,200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0500 J4	ND
Acrolein	mg/l	0.000042	0.007	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.0500	ND
Acrylonitrile	mg/l	0.00052	0.144	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.0100 J4	ND
Benzene	mg/l	0.005	0.03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00100	ND
Bromobenzene	mg/l	NE	1.68	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.00100	ND
Bromodichloromethane	mg/l	0.08	0.017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.00100	ND
Bromotorm	mg/l	0.08	2.77	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00100	ND
Bromomethane	mg/i	0.0075	0.027	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND
	mg/l	2																<0.00100	
tert-Butylbenzene	mg/l	0.69	NIT	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.00100	
Carbon tetrachloride	ma/l	0.005	0.008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00100	ND
Chlorobenzene	ma/l	0.1	0.883	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.00100	ND
Chlorodibromomethane	mg/l	0.08	NIT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.00100	ND
Chloroethane	mg/l	21	NIT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND
Chloroform	mg/l	0.08	0.015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.00500	ND
Chloromethane	mg/l	0.19	0.368	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00250	ND
2-Chlorotoluene	mg/l	NE	NIT	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.00100	ND
4-Chlorotoluene	mg/l	NE	NIT	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.00100	ND
1,2-Dibromo-3-Chloropropane	mg/l	0.0002	0.001	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.00500	ND
1,2-Dibromoethane (EDB)	mg/l	0.00005	0.004	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.00100	ND
Dibromomethane	mg/l	0.0083	0.244	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	< 0.00100	ND
1,2-Dichlorobenzene	mg/l	0.6	6.54	ND	ND	ND	ND	ND	ND	ND ND	ND	NT	NT	NT	NT		NT	< 0.00100	ND
1,3-Dichlorobenzene	mg/l	NE 0.075	NII	ND	ND	ND	ND	ND	ND	ND	ND			NI				<0.00100	ND
	mg/i	0.075	0.064	ND	ND	ND	ND	ND		ND	ND							<0.00100	ND
	mg/l	0.028	0.01	ND	ND					ND								<0.00500	ND
1,1-Dichloroethane (EDC)	mg/l	0.020	0.135	0.00366 ND						ND	ND			ND				0.00100	
1 1-Dichloroethene	mg/l	0.007	0.043	ND	ND	ND	ND			ND	ND	ND	ND	ND		ND	ND	<0.000494.5	
cis-1.2-Dichloroethene	ma/l	0.07	NIT	0.0325	0.037	ND	ND	3.53	3.32	28.4	28.1	40	63	25	20	16	22	0.019	ND
trans-1,2-Dichloroethene	mg/l	0.1	0.191	0.00777	0.00637	ND	ND	ND	1.14	1.22	ND	ND	2.5	ND	ND	ND	ND	0.0323	ND
1,2-Dichloropropane	mg/l	0.005	0.071	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.00100	ND
1,1-Dichloropropene	mg/l	NE	NIT	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.00100	ND
1,3-Dichloropropane	mg/l	0.37	NIT	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.00100	ND
cis-1,3-Dichloropropene	mg/l	NE	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00100	ND
trans-1,3-Dichloropropene	mg/l	NE	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.00100	ND
2,2-Dichloropropane	mg/l	NE	NIT	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.00100	ND
Ethylbenzene	mg/l	0.7	0.077	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00100	ND
Hexachloro-1,3-butadiene	mg/l	0.0014	0.008	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.00100	ND
n-Hexane	mg/l	1.5	0.018	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.0100	ND
	mg/l	0.45	2.42 NUT	ND	ND	ND	ND	ND	ND	ND	ND							<0.00100	ND
2 Butanono (MEK)	mg/l	5.6	1 200							ND								<0.00100	
2-Butarione (MEK)	mg/l	0.005	4,300															<0.0100	
A Methyl 2 pentanene (MIRK)	mg/l	6.3	0.1										ND					<0.00500	ND
4-ivietnyi-z-pentanone (iviiBK)	ing/i	0.3	1,190															<0.0100	
Ivietnyl tert-butyl ether (MIBE)	mg/l	0.14	7.86	ND	ND	ND		ND		ND	ND							<0.00100	ND
Naphthalene	mg/l	0.0017	0.127	ND	ND	ND		ND		ND ND	ND			NT				< 0.00500	ND
n-Propyidenzene	mg/l	0.66	5.9	ND	ND	ND				ND	ND			NI				<0.00100	
Siyrene	mg/i	0.1	22.2															<0.00100	
1,1,1,2-1 etrachloroethane	mg/l	0.0057	0.092																
	mg/l	0.00070	0.075						0.837	0.559									
Toluene	ma/l	1	39.2	ND	ND	ND			ND	ND				ND				<0.00100	
	····9/·		00.2				1					L	L					0.00100	

Partners P:\Project Files\2093 Cuyahoga County Department of Public Works\2093.10A Eddy-Kirby VAP PII PA\Report\Tables\Excel\Copy of Summary Tables (4,5,6) _Kirby JRK 2

Eddy-Kirby Parcels, Cle	eveland, Cu	uyahoga County, Ohio	1		IA-	01A						IA	-02						IA-03
Sample ID		VAP Standard	US EPA	HzW-03 *	HzW-03 *	MW-2 * ⁴	MW-2 * ⁴	WP-3 *	WP-3 *	WP-03 *	WP-03 *	WP-03 *	WP-03 *	WP-03 *	WP-3 *	WP-03 *	WP-3 *	P4-IA03-MW01	HzW-09 * ⁴
Collection Date				6/8/2004	7/1/2004	3/29/2000	3/14/2001	3/29/2000	10/5/2000	11/2/2000	6/10/2004	10/11/2007	11/8/2007	12/18/2007	1/15/2008	4/2/2008	8/18/2008	6/28/2023	7/20/2000
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
1,2,3-Trichlorobenzene	mg/l	NE	NIT	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.00100	ND
1,2,4-Trichlorobenzene	mg/l	0.07	0.103	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.00100	ND
1,1,1-Trichloroethane	mg/l	0.2	0.0773	0.0247	0.0136	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00100	ND
1,1,2-Trichloroethane	mg/l	0.005	0.013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00100	ND
Trichloroethene	mg/l	0.005	0.010	0.0247	0.0263	ND	ND	36.8	88.9	81	37.2	5.8	16	87	93	64	51	<0.00100	ND
Trichlorofluoromethane	mg/l	5.2	NIT	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.00500	ND
1,2,3-Trichloropropane	mg/l	0.000075	0.052	ND	ND	ND	ND	ND	ND 🧹	ND ND	ND	NT	NT	NT	NT	NT	NT	<0.00250	ND
1,2,4-Trimethylbenzene	mg/l	0.056	0.626	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.00100	ND
1,3,5-Trimethylbenzene	mg/l	0.06	0.439	ND	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT	NT	NT	NT	<0.00100	ND
Vinyl chloride	mg/l	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0049	ND
Xylenes, Total	mg/l	10	0.856	ND	ND	ND	ND	ND 🧹	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00300	ND

Notes

1. mg/l = Milligrams per liter - parts per million (ppm).

2. Ohio EPA Generic Unrestricted Potable Use Standards (UPUS)

3. USEPA VISL for Residential Land Use

4. Monitoring wells adjacent to IAs due to access issues.

5. IA09 and IA14 overlap.

* : Wells installed by and samples collected by HzW

NSV: Not sufficiently volatile; NIT: No inhalation toxicity.

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detect

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a concentration above a comparison standard. If exceeding more than one s

Laboratory Qualifiers:

J - The identification of the analyte is acceptable; the reported value is an estimate.

J3 - The associated batch QC was outside the establish quality control range for precision.

J4 - The associated batch QC was outside the established quality control range for accuracy.

Q.

Eddy-Kirby Parcels, Clev	eland, Cu	yahoga County, Ohio									IA	-03					
Sample ID		VAP Standard	US EPA	HzW-09 * ⁴	HMW-09 * ⁴	HMW-09 * ⁴	HMW-9R * ⁴	HMW-9R * ⁴	MW-9R * ⁴	MW-9R * ⁴	HMW-9R * ⁴	HzW-14 * ⁴	HzW-14 * ⁴	HzW-17 * ⁴	HzW-17 * ⁴	HMW-17 * ⁴	HMW-17 * ⁴
Collection Date				6/9/2004	7/5/2007	10/10/2007	11/8/2007	12/18/2007	1/15/2008	4/2/2008	8/18/2008	11/2/2000	6/10/2004	12/21/2000	1/4/2001	7/5/2007	10/10/2007
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatile Organic Compounds	- VOCs																
Acetone	mg/l	14	40,200	ND	ND	0.015	0.024	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrolein	mg/l	0.000042	0.007	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
Acrylonitrile	mg/l	0.00052	0.144	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
Benzene	mg/l	0.005	0.03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	mg/l	NE	1.68	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
Bromodichloromethane	mg/l	0.08	0.017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	mg/l	0.08	2.77	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	mg/l	0.0075	0.027	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	mg/l	1		ND		NI				NI		ND	ND	ND	ND	ND	NI
sec-BulyIbenzene	mg/i	2		ND								ND	ND	ND	ND	ND	
Carbon tetrachloride	mg/l	0.09															
	mg/l	0.005	0.000														
Chlorodibromomethane	ma/l	0.08	NIT											ND			
Chloroethane	ma/l	21	NIT	ND		ND				ND			ND	ND			
Chloroform	ma/l	0.08	0.015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	mg/l	0.19	0.368	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	ma/l	NE	NIT	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
4-Chlorotoluene	mg/l	NE	NIT	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
1,2-Dibromo-3-Chloropropane	mg/l	0.0002	0.001	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
1,2-Dibromoethane (EDB)	mg/l	0.00005	0.004	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
Dibromomethane	mg/l	0.0083	0.244	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
1,2-Dichlorobenzene	mg/l	0.6	6.54	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
1,3-Dichlorobenzene	mg/l	NE	NIT	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
1,4-Dichlorobenzene	mg/l	0.075	0.064	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
Dichlorodifluoromethane	mg/l	3.6	0.01	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
1,1-Dichloroethane	mg/l	0.028	0.135	ND	ND	ND	ND	NĎ	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane (EDC)	mg/l	0.005	0.043	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	mg/l	0.007	0.32	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	mg/l	0.07	NIT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.28	7.34	6.6	8.5
trans-1,2-Dichloroethene	mg/l	0.1	0.191	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.436	0.366	ND	0.25
1,2-Dichloropropane	mg/l	0.005	0.071	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichlerennen en e	mg/i	NE		ND	NI	NI				NI		ND	ND	ND	ND	ND	NI
i, 3-Dichloropropane	mg/l	0.37															
trans-1.3-Dichloropropene	ma/l	NE	0.1														
2 2-Dichloropropane	ma/l	NE	NIT	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
Ethylbenzene	mg/l	0.7	0.077	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloro-1,3-butadiene	ma/l	0.0014	0.008	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
n-Hexane	mg/l	1.5	0.018	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
Isopropylbenzene	mg/l	0.45	2.42	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
p-lsopropyltoluene	mg/l	0.18	NIT	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
2-Butanone (MEK)	mg/l	5.6	4,300	ND	ND	0.036	0.024	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	mg/l	0.005	8.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone (MIBK)	mg/l	6.3	1,190	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE)	mg/l	0.14	7.86	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
Naphthalene	mg/l	0.0017	0.127	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
n-Propylbenzene	mg/l	0.66	5.9	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
Styrene	mg/l	0.1	22.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	mg/l	0.0057	0.092	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
1,1,2,2-Tetrachloroethane	mg/l	0.00076	0.075	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	mg/l	0.005	0.122	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	mg/l	1	39.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Eddy-Kirby Parcels, C	leveland, Cu	iyahoga County, Ohio)								IA	\-03					
Sample ID		VAP Standard	US EPA	HzW-09 * ⁴	HMW-09 * ⁴	HMW-09 * ⁴	HMW-9R * ⁴	HMW-9R * ⁴	MW-9R * ⁴	MW-9R * ⁴	HMW-9R * ⁴	HzW-14 * ⁴	HzW-14 * ⁴	HzW-17 * ⁴	HzW-17 * ⁴	HMW-17 * ⁴	HMW-17 * ⁴
Collection Date				6/9/2004	7/5/2007	10/10/2007	11/8/2007	12/18/2007	1/15/2008	4/2/2008	8/18/2008	11/2/2000	6/10/2004	12/21/2000	1/4/2001	7/5/2007	10/10/2007
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
1,2,3-Trichlorobenzene	mg/l	NE	NIT	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
1,2,4-Trichlorobenzene	mg/l	0.07	0.103	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
1,1,1-Trichloroethane	mg/l	0.2	0.0773	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	mg/l	0.005	0.013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	mg/l	0.005	0.010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.435	0.374	ND	ND
Trichlorofluoromethane	mg/l	5.2	NIT	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
1,2,3-Trichloropropane	mg/l	0.0000075	0.052	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
1,2,4-Trimethylbenzene	mg/l	0.056	0.626	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
1,3,5-Trimethylbenzene	mg/l	0.06	0.439	ND	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	NT
Vinyl chloride	mg/l	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	0.0016	ND	ND	ND	ND	ND	ND
Xylenes, Total	mg/l	10	0.856	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.36	0.985	ND	0.47

Notes

1. mg/l = Milligrams per liter - parts per million (ppm).

2. Ohio EPA Generic Unrestricted Potable Use Standards (UPUS)

3. USEPA VISL for Residential Land Use

4. Monitoring wells adjacent to IAs due to access issues.

5. IA09 and IA14 overlap.

* : Wells installed by and samples collected by HzW

NSV: Not sufficiently volatile; NIT: No inhalation toxicity.

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detect

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a concentration above a comparison standard. If exceeding more than one :

Laboratory Qualifiers:

J - The identification of the analyte is acceptable; the reported value is an estimate.

J3 - The associated batch QC was outside the establish quality control range for precision.

J4 - The associated batch QC was outside the established quality control range for accuracy.

Eddy-Kirby Parcels, Cleve	eland, Cu	iyahoga County, Ohio				IA	-03		IA-04	IA	-05	IA	-06	IA-07		IA	-08
Sample ID		VAP Standard	US EPA	HMW-17 * ⁴	HMW-17 * ⁴	MW-17 * ⁴	HMW-17 * ⁴	HMW-17 * ⁴	P4-IA04-MW01	HzW-10 * ⁴	HzW-10 * ⁴	HzW-11 * ⁴	HzW-11 * ⁴	P4-IA07-MW01	HzW-08 * ⁴	HzW-8 * ⁴	HzW-8 * ⁴
Collection Date				11/8/2007	12/18/2007	1/15/2008	4/2/2008	8/18/2008	6/28/2023	7/20/2000	6/9/2004	10/19/200	6/8/2004	6/28/2023	7/20/2000	10/19/2000	11/2/2000
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatile Organic Compounds -	VOCs																
Acetone	mg/l	14	40,200	ND	ND	ND	ND	ND	<0.0500 J4	ND	ND	ND	ND	<0.0500 J4	ND	ND	ND
Acrolein	mg/l	0.000042	0.007	NT	NT	NT	NT	NT	<0.0500	ND	ND	ND	ND	<0.0500	ND	ND	ND
Acrylonitrile	mg/l	0.00052	0.144	NT	NT	NT	NT	NT	<0.0100 J4	ND	ND	ND	ND	<0.0100 J4	ND	ND	ND
Benzene	mg/l	0.005	0.03	ND	ND	ND	ND	ND	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
Bromobenzene	mg/l	NE	1.68	NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
Bromodichloromethane	mg/l	0.08	0.017	ND	ND	ND	ND	ND	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
Bromotorm	mg/l	0.08	2.77	ND	ND	ND	ND	ND	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
Bromometnane	mg/i	0.0075	0.027	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND	ND	<0.00500	ND	ND	ND
n-Butylbenzene	mg/l	2							<0.00100			ND		<0.00100			ND
tert-Butylbenzene	mg/l	0.69		NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
Carbon tetrachloride	mg/l	0.005	0.008	ND	ND	ND			<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
Chlorobenzene	ma/l	0.1	0.883	ND	ND	ND			<0.00100	ND	ND	ND		<0.00100	ND	ND	ND
Chlorodibromomethane	ma/l	0.08	NIT	ND	ND	ND	ND	ND	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
Chloroethane	mg/l	21	NIT	ND	ND	ND	ND	ND	< 0.00500	ND	ND	ND	ND	<0.00500	ND	ND	ND
Chloroform	mg/l	0.08	0.015	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND	ND	<0.00500	ND	ND	ND
Chloromethane	mg/l	0.19	0.368	ND	ND	ND	ND	ND	<0.00250	ND	ND	ND	ND	<0.00250	ND	ND	ND
2-Chlorotoluene	mg/l	NE	NIT	NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
4-Chlorotoluene	mg/l	NE	NIT	NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
1,2-Dibromo-3-Chloropropane	mg/l	0.0002	0.001	NT	NT	NT	NT	NT	<0.00500	ND	ND	ND	ND	<0.00500	ND	ND	ND
1,2-Dibromoethane (EDB)	mg/l	0.00005	0.004	NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
Dibromomethane	mg/l	0.0083	0.244	NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
1,2-Dichlorobenzene	mg/l	0.6	6.54	NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
1,3-Dichlorobenzene	mg/l	NE	NIT	NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
1,4-Dichlorobenzene	mg/l	0.075	0.064	NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
Dichlorodifluoromethane	mg/l	3.6	0.01	NI	NI	NI	NI ND	N	<0.00500	ND	ND	ND	ND	< 0.00500	ND	ND	ND
1,1-Dichloroethane	mg/i	0.028	0.135	ND	ND	ND	ND	ND	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
1,2-Dichloroethane (EDC)	mg/l	0.003	0.043	ND					<0.00100					<0.00100			
cis_1 2-Dichloroethene	mg/l	0.007	0.32 NIT	73	ND 4 1	3.4	38	ND	<0.00100	ND	ND	ND	ND	<0.00100	0.0155	0.00526	0.00502
trans-1 2-Dichloroethene	mg/l	0.01	0 191	ND	0.18	0.18	S:0	ND	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
1.2-Dichloropropane	ma/l	0.005	0.071	ND	ND	ND	ND	ND	< 0.00100	ND	ND	ND	ND	< 0.00100	ND	ND	ND
1.1-Dichloropropene	ma/l	NE	NIT	NT	NT	NT	NT	NT	< 0.00100	ND	ND	ND	ND	< 0.00100	ND	ND	ND
1,3-Dichloropropane	mg/l	0.37	NIT	NT	NT	NT	NT	NT	< 0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
cis-1,3-Dichloropropene	mg/l	NE	0.1	ND	ND	ND	ND	ND	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
trans-1,3-Dichloropropene	mg/l	NE	0.1	ND	ND	ND	ND	ND	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
2,2-Dichloropropane	mg/l	NE	NIT	NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
Ethylbenzene	mg/l	0.7	0.077	ND	ND	ND	ND	ND	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
Hexachloro-1,3-butadiene	mg/l	0.0014	0.008	NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
n-Hexane	mg/l	1.5	0.018	NT	NT	NT	NT	NT	<0.0100	ND	ND	ND	ND	<0.0100	ND	ND	ND
Isopropylbenzene	mg/l	0.45	2.42	NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
p-Isopropyltoluene	mg/l	0.18	NIT	NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
2-Butanone (MEK)	mg/l	5.6	4,300	ND	ND	ND	ND	ND	<0.0100	ND	ND	ND	ND	< 0.0100	ND	ND	ND
	mg/i	0.005	8.1	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND	ND	<0.00500	ND	ND	ND
4-Methyl-2-pentanone (MIBK)	mg/l	6.3	1,190		ND	ND			<0.0100	ND		ND		<0.0100	ND		
Methyl tert-butyl ether (MTBE)	mg/l	0.14	7.86	NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
Naphthalene	mg/l	0.0017	0.127	NT	NT	NT			<0.00500	ND	ND ND	ND	ND	<0.00500	ND		ND
n-Propylbenzene	mg/l	0.66	5.9	NT	NT	NT			<0.00100	ND	ND ND	ND	ND ND	<0.00100	ND	ND ND	ND ND
Styrene	mg/l	0.1	22.2		ND	ND			<0.00100	ND	ND ND	ND		<0.00100	ND	ND ND	ND ND
1, 1, 1, 2-1 etrachloroethane	mg/l	0.0057	0.092			NI			<0.00100	ND		ND		<0.00100	ND		ND ND
	mg/I	0.00076	0.075						<0.00100								
	mg/l	1	30.2														
roldelle	ing/i		39.2	שאו	שא	טא	עא ן		<u>\0.00100</u>	ND		שא	עא ן	<u>\0.00100</u>	UN		

Eddy-Kirby Parcels, C	leveland, Cu	iyahoga County, Ohio)			IA	\-03		IA-04	IA	-05	IA	-06	IA-07		IA	-08
Sample ID		VAP Standard	US EPA	HMW-17 * ⁴	HMW-17 * ⁴	MW-17 * ⁴	HMW-17 * ⁴	HMW-17 * ⁴	P4-IA04-MW01	HzW-10 * ⁴	HzW-10 * ⁴	HzW-11 * ⁴	HzW-11 * ⁴	P4-IA07-MW01	HzW-08 * ⁴	HzW-8 * ⁴	HzW-8 * ⁴
Collection Date				11/8/2007	12/18/2007	1/15/2008	4/2/2008	8/18/2008	6/28/2023	7/20/2000	6/9/2004	10/19/200	6/8/2004	6/28/2023	7/20/2000	10/19/2000	11/2/2000
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
1,2,3-Trichlorobenzene	mg/l	NE	NIT	NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
1,2,4-Trichlorobenzene	mg/l	0.07	0.103	NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
1,1,1-Trichloroethane	mg/l	0.2	0.0773	ND	ND	ND	ND	ND	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
1,1,2-Trichloroethane	mg/l	0.005	0.013	ND	ND	ND	ND	ND	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
Trichloroethene	mg/l	0.005	0.010	ND	ND	ND	ND	ND	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
Trichlorofluoromethane	mg/l	5.2	NIT	NT	NT	NT	NT	NT	0.000631 J	ND	ND	ND	ND	<0.00500	ND	ND	ND
1,2,3-Trichloropropane	mg/l	0.000075	0.052	NT	NT	NT	NT	NT	<0.00250	ND	ND	ND	ND	<0.00250	ND	ND	ND
1,2,4-Trimethylbenzene	mg/l	0.056	0.626	NT	NT	NT	NT	NT	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
1,3,5-Trimethylbenzene	mg/l	0.06	0.439	NT	NT	NT	NT	NT	<0.00100 J4	ND	ND	ND	ND	<0.00100	ND	ND	ND
Vinyl chloride	mg/l	0.002	0.002	ND	ND	ND	ND	ND	<0.00100	ND	ND	ND	ND	<0.00100	ND	ND	ND
Xylenes, Total	mg/l	10	0.856	1.4	2.7	4	13	4	<0.00300	ND	ND	ND	ND	<0.00300	ND	ND	ND

Notes

1. mg/l = Milligrams per liter - parts per million (ppm).

2. Ohio EPA Generic Unrestricted Potable Use Standards (UPUS)

3. USEPA VISL for Residential Land Use

4. Monitoring wells adjacent to IAs due to access issues.

5. IA09 and IA14 overlap.

* : Wells installed by and samples collected by HzW

NSV: Not sufficiently volatile; NIT: No inhalation toxicity.

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detect

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a concentration above a comparison standard. If exceeding more than one :

Laboratory Qualifiers:

J - The identification of the analyte is acceptable; the reported value is an estimate.

J3 - The associated batch QC was outside the establish quality control range for precision.

J4 - The associated batch QC was outside the established quality control range for accuracy.

Table 5A: Summary of VC	Cs in Gr	oundwater			1				00				10.40	1	14.44		1 14
Euroy-Kirby Parcels, Cleve	elanu, Cu	iyanoga County, Onio					1	1 <i>F</i>	-09 				IA-10		IA-11	1	
Sample ID		VAP Standard	US EPA	HzW-8 * ⁴	HzW-06 * ⁴	HzW-06 * ⁴	HzW-13 * ⁴	HzW-13 * ⁴	HzW-15 * ^{4 5}	HzW-15 * ^{4 5}	HzW-20 * ^{4 5}	HzW-20 * ^{4 5}	HzW-18 * ⁴	P4-IA11-MW01	HzW-05 * ⁴	HzW-05 * ⁴	HzW-19 * ⁴
Collection Date				6/9/2004	7/20/2000	6/9/2004	10/19/2000	11/2/2000	11/17/2000	12/5/2000	6/1/2001	6/9/2004	6/9/2004	6/28/2023	7/20/2000	6/9/2004	6/1/2001
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatile Organic Compounds -	VOCs		И	-													
Acetone	mg/l	14	40,200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.250 J3	ND	ND	ND
Acrolein	mg/l	0.000042	0.007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.250 J4	ND	ND	ND
Acrylonitrile	mg/l	0.00052	0.144	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0500	ND	ND	ND
Benzene	mg/l	0.005	0.03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
Bromobenzene	mg/l	NE	1.68	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
Bromodichloromethane	mg/l	0.08	0.017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
Bromoform	mg/l	0.08	2.77	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.00500	ND	ND	ND
Bromomethane	mg/l	0.0075	0.027	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.0250	ND	ND	ND ND
n-Butylbenzene	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND ND
sec-Butylbenzene	mg/l	0.60			ND	ND		ND	ND	ND		ND		<0.00500			ND
	mg/l	0.09	0.008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500		ND	ND
Chlorobenzene	mg/l	0.000	0.000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
Chlorodibromomethane	mg/l	0.08	NIT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
Chloroethane	ma/l	21	NIT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.0250	ND	ND	ND
Chloroform	mg/l	0.08	0.015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0250	ND	ND	ND
Chloromethane	mg/l	0.19	0.368	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0125	ND	ND	ND
2-Chlorotoluene	mg/l	NE	NIT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
4-Chlorotoluene	mg/l	NE	NIT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
1,2-Dibromo-3-Chloropropane	mg/l	0.0002	0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0250	ND	ND	ND
1,2-Dibromoethane (EDB)	mg/l	0.00005	0.004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
Dibromomethane	mg/l	0.0083	0.244	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
1,2-Dichlorobenzene	mg/l	0.6	6.54	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.00500	ND	ND	ND
1,3-Dichlorobenzene	mg/l	NE 0.075	NIT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.00500	ND	ND	ND ND
1,4-Dichlorobenzene	mg/l	0.075	0.064	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
Dichlorodifluoromethane	mg/i	<u> </u>	0.01	ND ND	ND	ND	ND	ND	ND 0.0504	ND	ND	ND	ND	<0.0250	ND	ND	ND ND
1, 1-Dichloroethane (EDC)	mg/l	0.020	0.135			ND	0.00517		0.0594	0.0521 ND				0.0399			
1 1-Dichloroethene	mg/l	0.007	0.32	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
cis-1,2-Dichloroethene	ma/l	0.07	NIT	ND	ND	ND	ND	ND	0.146	0.121	ND	ND	ND	0.15	ND	ND	ND
trans-1,2-Dichloroethene	mg/l	0.1	0.191	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00766	ND	ND	ND
1,2-Dichloropropane	mg/l	0.005	0.071	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
1,1-Dichloropropene	mg/l	NE	NIT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
1,3-Dichloropropane	mg/l	0.37	NIT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
cis-1,3-Dichloropropene	mg/l	NE	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
trans-1,3-Dichloropropene	mg/l	NE	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
2,2-Dichloropropane	mg/l	NE	NIT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
Ethylbenzene	mg/l	0.7	0.077	ND	ND	ND				ND	ND ND	ND ND	ND	< 0.00500	ND	ND ND	ND ND
Hexachloro-1,3-butadiene	mg/l	0.0014	0.008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
n-Hexane	mg/i	0.45	0.018	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0500	ND	ND	ND ND
n-lsopropyltoluene	mg/l	0.43	2.42 NIT		ND	ND	ND	ND	ND	ND	ND	ND		<0.00500			ND
2-Butanone (MEK)	mg/l	5.6	4 300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00000	ND		ND
Methylene Chloride	ma/l	0.005	8.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0250	ND	ND	ND
4-Methyl-2-pentanone (MIRK)	ma/l	6.3	1 190	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0500	ND	ND	ND
Methyl tert-butyl ether (MTBF)	ma/l	0.14	7.86	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
Naphthalene	ma/l	0.0017	0 127	ND	ND	ND				ND	ND	ND	ND	<0.0250	ND		ND
n-Propylbenzene	ma/l	0.66	5.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
Styrene	ma/l	0.1	22.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.00500	ND	ND	ND
1,1,1,2-Tetrachloroethane	mg/l	0.0057	0.092	ND	ND	ND	ND	ND	0.0952	ND	ND	ND	ND	< 0.00500	ND	ND	ND
1,1,2,2-Tetrachloroethane	mg/l	0.00076	0.075	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
Tetrachloroethene	mg/l	0.005	0.122	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
Toluene	mg/l	1	39.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND

Partners P:\Project Files\2093 Cuyahoga County Department of Public Works\2093.10A Eddy-Kirby VAP PII PA\Report\Tables\Excel\Copy of Summary Tables (4,5,6) _Kirby JRK 2

Eddy-Kirby Parcels, Clev	/eland, Cι	uyahoga County, Ohio	I					IA	-09				IA-10		IA-11		IA
Sample ID		VAP Standard	US EPA	HzW-8 * ⁴	HzW-06 * ⁴	HzW-06 * ⁴	HzW-13 * ⁴	HzW-13 * ⁴	HzW-15 * ^{4 5}	HzW-15 * ^{4 5}	HzW-20 * ^{4 5}	HzW-20 * ^{4 5}	HzW-18 * ⁴	P4-IA11-MW01	HzW-05 * ⁴	HzW-05 * ⁴	HzW-19 * ⁴
Collection Date				6/9/2004	7/20/2000	6/9/2004	10/19/2000	11/2/2000	11/17/2000	12/5/2000	6/1/2001	6/9/2004	6/9/2004	6/28/2023	7/20/2000	6/9/2004	6/1/2001
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
1,2,3-Trichlorobenzene	mg/l	NE	NIT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
1,2,4-Trichlorobenzene	mg/l	0.07	0.103	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
1,1,1-Trichloroethane	mg/l	0.2	0.0773	ND	0.0341	0.0264	ND	ND	ND	0.064	ND	ND	ND	0.00169 J	ND	ND	ND
1,1,2-Trichloroethane	mg/l	0.005	0.013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
Trichloroethene	mg/l	0.005	0.010	ND	ND	ND	ND	ND	0.0207	0.0264	ND	ND	ND	0.00196 J	ND	ND	ND
Trichlorofluoromethane	mg/l	5.2	NIT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0250	ND	ND	ND
1,2,3-Trichloropropane	mg/l	0.0000075	0.052	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0125	ND	ND	ND
1,2,4-Trimethylbenzene	mg/l	0.056	0.626	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
1,3,5-Trimethylbenzene	mg/l	0.06	0.439	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.00500	ND	ND	ND
Vinyl chloride	mg/l	0.002	0.002	ND	ND	ND	ND	ND	0.0753	0.047	ND	ND	ND	0.00895	ND	ND	ND
Xylenes, Total	mg/l	10	0.856	ND	ND	ND	ND	ND	0.00518	ND	ND	ND	ND	<0.0150	ND	ND	ND

Notes

1. mg/l = Milligrams per liter - parts per million (ppm).

2. Ohio EPA Generic Unrestricted Potable Use Standards (UPUS)

3. USEPA VISL for Residential Land Use

4. Monitoring wells adjacent to IAs due to access issues.

5. IA09 and IA14 overlap.

* : Wells installed by and samples collected by HzW

NSV: Not sufficiently volatile; NIT: No inhalation toxicity.

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detect

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a concentration above a comparison standard. If exceeding more than one :

Laboratory Qualifiers:

J - The identification of the analyte is acceptable; the reported value is an estimate.

J3 - The associated batch QC was outside the establish quality control range for precision.

J4 - The associated batch QC was outside the established quality control range for accuracy.

Eddy-Kirby Parcels Cleve		vahoga County Ohio		12	1			ΙΔ-14				General	Coverage	14-53	14-54	14-56	14-57
Sample ID	olana, oa	VAP Standard	US FPA	HzW-19 * ⁴	HzW-07 * ⁴	HzW-07 * ⁴	HzW-12 * ⁴	HzW-12 * ⁴	HzW-21 * ⁴	HzW-21 * ⁴	HMW-21 * ⁴	P4-GC-MW01	Duplicate 3 (P4- GC-MW01)	P5-IA53-MW01	P5-IA54-MW01	P5-IA56-MW01	P5-IA57-MW01
Collection Date			002177	6/9/2004	7/20/2000	6/9/2004	10/9/2000	11/2/2000	6/1/2001	6/8/2004	7/5/2007	6/29/2023	6/29/2023	6/30/2023	6/29/2023	6/29/2023	6/30/2023
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result	Result	Result							
Volatile Organic Compounds -	VOCs		11														
Acetone	mg/l	14	40,200	ND	<0.0500 J4	<0.0500 J4	<0.0500 J4	0.012 J	<0.0500 J4	<0.0500 J4							
Acrolein	mg/l	0.000042	0.007	ND	NT	<0.0500	< 0.0500	<0.0500	<0.0500	<0.0500	<0.0500						
Acrylonitrile	mg/l	0.00052	0.144	ND	NT	<0.0100 J4	<0.0100 J4	<0.0100 J4	<0.0100 J4	<0.0100 J4	<0.0100 J4						
Benzene	mg/l	0.005	0.03	ND	<0.00100	<0.00100	<0.00100	0.000207 J	<0.00100	<0.00100							
Bromobenzene	mg/l	NE	1.68	ND	NT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100						
Bromodichloromethane	mg/l	0.08	0.017	ND	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100							
Bromoform	mg/l	0.08	2.77	ND	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100							
Bromomethane	mg/l	0.0075	0.027	ND	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500							
n-Butylbenzene	mg/l	1	NIT	ND	NT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100						
sec-Butylbenzene	mg/l	2	NIT	ND	NT	<0.00100	<0.00100	<0.00100	0.00172	<0.00100	<0.00100						
tert-Butylbenzene	mg/l	0.69	NIT	ND	NT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100						
Carbon tetrachloride	mg/l	0.005	0.008	ND		<0.00100	<0.00100	< 0.00100	<0.00100	<0.00100	<0.00100						
Chlorobenzene	mg/l	0.1	0.883	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Chlorodibromomethane	mg/l	0.08		ND	ND	ND 0.00507				ND	ND ND	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Chloroethane	mg/l	21	NII 0.015	ND	ND	0.00567	0.0156	0.0122	ND	ND	ND	< 0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500
Chloroform	mg/i	0.00	0.015	ND	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500							
	mg/l	0.19 NE	0.300			ND	ND					<0.00250	<0.00250	<0.00250	<0.00250	<0.00250	<0.00250
4 Chlorotoluone	mg/l									ND		<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1 2-Dibromo-3-Chloropropage	mg/l	0.0002	0.001	ND	NT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100						
1,2-Dibromoethane (EDB)	mg/l	0.00005	0.001	ND	NT	<0.00300	<0.00300	<0.00000	<0.00000	<0.00300	<0.00300						
Dibromomethane	mg/l	0.0083	0.004	ND	ND	ND	ND		ND	ND	NT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1.2-Dichlorobenzene	mg/l	0.6	6.54	ND	NT	< 0.00100	< 0.00100	< 0.00100	< 0.00100	< 0.00100	< 0.00100						
1.3-Dichlorobenzene	ma/l	NE	NIT	ND	NT	< 0.00100	< 0.00100	< 0.00100	< 0.00100	< 0.00100	< 0.00100						
1,4-Dichlorobenzene	mg/l	0.075	0.064	ND	NT	<0.00100	<0.00100	< 0.00100	<0.00100	<0.00100	<0.00100						
Dichlorodifluoromethane	mg/l	3.6	0.01	ND	NT	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500						
1,1-Dichloroethane	mg/l	0.028	0.135	ND	0.219	0.103	0.00779	0.00703	ND	ND	ND	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1,2-Dichloroethane (EDC)	mg/l	0.005	0.043	ND	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100							
1,1-Dichloroethene	mg/l	0.007	0.32	ND	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100							
cis-1,2-Dichloroethene	mg/l	0.07	NIT	ND	ND	ND	0.272	0.0237	ND	ND	ND	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
trans-1,2-Dichloroethene	mg/l	0.1	0.191	ND	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100							
1,2-Dichloropropane	mg/l	0.005	0.071	ND	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100							
1,1-Dichloropropene	mg/l	NE	NIT	ND	NT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100						
1,3-Dichloropropane	mg/l	0.37	NIT	ND	NT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100						
cis-1,3-Dichloropropene	mg/l	NE	0.1	ND	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100							
trans-1,3-Dichloropropene	mg/l	NE	0.1	ND	ND	ND	ND ND	ND	ND	ND		<0.00100	<0.00100	<0.00100	< 0.00100	<0.00100	< 0.00100
2,2-Dichloropropane	mg/l	NE 07		ND	ND	ND	ND ND	ND		ND		<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
	mg/I	0.7	0.077		ND	ND				ND		<0.00100	<0.00100	<0.00100	0.00595	<0.00100	<0.00100
	mg/I	1.5	0.008									<0.00100		<0.00100	<0.00100	<0.00100	<0.00100
	mg/l	0.45	0.018												0.0100		
	mg/l	0.45	2.42 NIT		ND	ND	ND		ND	ND		<0.00100	<0.00100	<0.00100	0.00321	<0.00100	<0.00100
2-Butanone (MEK)	mg/l	5.6	4 300	ND	<0.00100	<0.00100	<0.00100	<0.00437	<0.00100	<0.00100							
Methylene Chloride	mg/l	0.005	8.1	ND	<0.0100	<0.0100	<0.00500	<0.0100	<0.0100	<0.00500							
4-Methyl-2-pentanone (MIRK)	ma/l	6.3	1 190	ND	ND	ND	ND			ND		<0.0100	<0.0100	<0.0100	0.00000	<0.00000	<0.0100
	ma/l	0.14	7.86									<0.0100	<0.0100	<0.0100	<0.0002	<0.0100	<0.0100
	ma//	0.047	7.00													<0.00100	
n Propylbenzenc	mg/l	0.0017	5.0												0.00113 J		
Styrene	mg/l	0.00	22.9														
1 1 1 2-Tetrachloroethane	mg/l	0.0057	0.002														
1 1 2 2-Tetrachloroethane	ma/l	0.00076	0.092									<0.00100			<0.00100	<0.00100	
Tetrachloroethene	ma/l	0.005	0.122		ND							<0.00100	<0.00100	<0.00100	0.00100	<0.00100	<0.00100
Toluene	ma/l	1	39.2		ND	ND	ND	ND		ND		<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
10100110	y/i		0.9.2									-0.00100	-0.00100	-0.00100	-0.00100		-0.00100

Eddy-Kirby Parcels, Cle	eveland, Cu	yahoga County, Ohio	I.	12				IA-14				General	Coverage	IA-53	IA-54	IA-56	IA-57
Sample ID		VAP Standard	US EPA	HzW-19 * ⁴	HzW-07 * ⁴	HzW-07 * ⁴	HzW-12 * ⁴	HzW-12 * ⁴	HzW-21 * ⁴	HzW-21 * ⁴	HMW-21 * ⁴	P4-GC-MW01	Duplicate 3 (P4- GC-MW01)	P5-IA53-MW01	P5-IA54-MW01	P5-IA56-MW01	P5-IA57-MW01
Collection Date				6/9/2004	7/20/2000	6/9/2004	10/9/2000	11/2/2000	6/1/2001	6/8/2004	7/5/2007	6/29/2023	6/29/2023	6/30/2023	6/29/2023	6/29/2023	6/30/2023
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result	Result	Result							
1,2,3-Trichlorobenzene	mg/l	NE	NIT	ND	NT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100						
1,2,4-Trichlorobenzene	mg/l	0.07	0.103	ND	NT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100						
1,1,1-Trichloroethane	mg/l	0.2	0.0773	ND	0.0686	0.0427	ND	ND	ND	ND	ND	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1,1,2-Trichloroethane	mg/l	0.005	0.013	ND	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100							
Trichloroethene	mg/l	0.005	0.010	ND	<0.00100	<0.00100	<0.00100	0.000237 J	<0.00100	<0.00100							
Trichlorofluoromethane	mg/l	5.2	NIT	ND	NT	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500						
1,2,3-Trichloropropane	mg/l	0.0000075	0.052	ND	NT	<0.00250	<0.00250	<0.00250	<0.00250	<0.00250	<0.00250						
1,2,4-Trimethylbenzene	mg/l	0.056	0.626	ND	NT	<0.00100	<0.00100	<0.00100	0.00279	<0.00100	<0.00100						
1,3,5-Trimethylbenzene	mg/l	0.06	0.439	ND	NT	<0.00100	<0.00100	<0.00100	0.00138	<0.00100	<0.00100						
Vinyl chloride	mg/l	0.002	0.002	ND	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100							
Xylenes, Total	mg/l	10	0.856	ND	<0.00300	<0.00300	<0.00300	0.0154	<0.00300	<0.00300							

Notes

1. mg/l = Milligrams per liter - parts per million (ppm).

2. Ohio EPA Generic Unrestricted Potable Use Standards (UPUS)

3. USEPA VISL for Residential Land Use

4. Monitoring wells adjacent to IAs due to access issues.

5. IA09 and IA14 overlap.

* : Wells installed by and samples collected by HzW

NSV: Not sufficiently volatile; NIT: No inhalation toxicity.

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detect

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a concentration above a comparison standard. If exceeding more than one :

Laboratory Qualifiers:

J - The identification of the analyte is acceptable; the reported value is an estimate.

J3 - The associated batch QC was outside the establish quality control range for precision.

J4 - The associated batch QC was outside the established quality control range for accuracy.

Eddy-Kirby Parcels, Cleve	eland, Cu	iyahoga County, Ohio		General Coverage		QA	/QC	
Sample ID		VAP Standard	US FPA	P5-GC-MW01	Field Blank	Field Blank 2	Trip Blank	Equipment Blan
Collection Date				6/29/2023	6/29/2023	6/30/2023	6/29/2023	6/29/2023
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result
Volatile Organic Compounds -	VOCs		<u>u</u>					
Acetone	mg/l	14	40,200	<0.0500 J4	<0.0500 J4	<0.0500 J4	<0.0500 J4	<0.0500 J4
Acrolein	mg/l	0.000042	0.007	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Acrylonitrile	mg/l	0.00052	0.144	<0.0100 J4	<0.0100 J4	<0.0100 J4	<0.0100 J4	<0.0100 J4
Benzene	mg/l	0.005	0.03	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Bromobenzene	mg/l	NE	1.68	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Bromodichloromethane	mg/l	0.08	0.017	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Bromoform	mg/l	0.08	2.77	<0.00100	<0.00100	<0.00100	<0.00100	< 0.00100
Bromomethane	mg/l	0.0075	0.027	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500
n-Butylbenzene	mg/l	1	NIT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
sec-Butylbenzene	mg/l	2	NIT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
tert-Butylbenzene	mg/l	0.69	NIT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Carbon tetrachloride	mg/l	0.005	0.008	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Chlorobenzene	mg/l	0.1	0.883	<0.00100	<0.00100	<0.00100	<0.00100	< 0.00100
Chlorodibromomethane	mg/l	0.08	NIT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Chloroethane	mg/l	21	NIT	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500
Chloroform	mg/l	0.08	0.015	<0.00500	<0.00500	0.000353 J	<0.00500	<0.00500
Chloromethane	mg/l	0.19	0.368	<0.00250	<0.00250	<0.00250	<0.00250	<0.00250
2-Chlorotoluene	mg/l	NE	NIT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
4-Chlorotoluene	mg/l	NE	NIT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1,2-Dibromo-3-Chloropropane	mg/l	0.0002	0.001	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500
1,2-Dibromoethane (EDB)	mg/l	0.00005	0.004	<0.00100	<0.00100	<0.00100	<0.00100	< 0.00100
Dibromomethane	mg/l	0.0083	0.244	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1,2-Dichlorobenzene	mg/l	0.6	6.54	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1,3-Dichlorobenzene	mg/l	NE	NIT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1,4-Dichlorobenzene	mg/l	0.075	0.064	<0.00100	< 0.00100	<0.00100	<0.00100	<0.00100
Dichlorodifluoromethane	mg/l	3.6	0.01	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500
1,1-Dichloroethane	mg/l	0.028	0.135	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1,2-Dichloroethane (EDC)	mg/l	0.005	0.043	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1,1-Dichloroethene	mg/l	0.007	0.32	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
cis-1,2-Dichloroethene	mg/l	0.07	NIT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
trans-1,2-Dichloroethene	mg/l	0.1	0.191	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1,2-Dichloropropane	mg/l	0.005	0.071	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1,1-Dichloropropene	mg/l	NE	NIT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1,3-Dichloropropane	mg/l	0.37	NIT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
cis-1,3-Dichloropropene	mg/l	NE	0.1	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
trans-1,3-Dichloropropene	mg/l	NE	0.1	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
2,2-Dichloropropane	mg/l	NE	NIT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Ethylbenzene	mg/l	0.7	0.077	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Hexachloro-1,3-butadiene	mg/l	0.0014	0.008	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
n-Hexane	mg/l	1.5	0.018	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
Isopropylbenzene	mg/l	0.45	2.42	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
p-lsopropyltoluene	mg/l	0.18	NIT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
2-Butanone (MEK)	mg/l	5.6	4,300	<0.0100	0.00323	<0.0100	<0.0100	<0.0100
Methylene Chloride	mg/l	0.005	8.1	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500
4-Methyl-2-pentanone (MIBK)	mg/l	6.3	1,190	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
Methyl tert-butyl ether (MTBE)	mg/l	0.14	7.86	<0.00100	< 0.00100	<0.00100	<0.00100	<0.00100
Naphthalene	mg/l	0.0017	0.127	<0.00500	<0.00500	< 0.00500	<0.00500	<0.00500
n-Propylbenzene	mg/l	0.66	5.9	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Styrene	mg/l	0.1	22.2	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1,1,1,2-Tetrachloroethane	mg/l	0.0057	0.092	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1,1,2,2-Tetrachloroethane	mg/l	0.00076	0.075	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Tetrachloroethene	mg/l	0.005	0.122	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Toluene	mg/l	1	39.2	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
					-			
Table 5A: Summary of VOCs in Groundwater

Table 5A. Summary of	VOCS III GI	ounuwater						
Eddy-Kirby Parcels, Cl	eveland, Cu	yahoga County, Ohio	I	General Coverage		QA	/QC	
Sample ID		VAP Standard	US EPA	P5-GC-MW01	Field Blank	Field Blank 2	Trip Blank	Equipment Blank
Collection Date				6/29/2023	6/29/2023	6/30/2023	6/29/2023	6/29/2023
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result
1,2,3-Trichlorobenzene	mg/l	NE	NIT	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1,2,4-Trichlorobenzene	mg/l	0.07	0.103	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1,1,1-Trichloroethane	mg/l	0.2	0.0773	<0.00100	<0.00100	< 0.00100	<0.00100	<0.00100
1,1,2-Trichloroethane	mg/l	0.005	0.013	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Trichloroethene	mg/l	0.005	0.010	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Trichlorofluoromethane	mg/l	5.2	NIT	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500
1,2,3-Trichloropropane	mg/l	0.0000075	0.052	<0.00250	<0.00250	<0.00250	<0.00250	<0.00250
1,2,4-Trimethylbenzene	mg/l	0.056	0.626	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
1,3,5-Trimethylbenzene	mg/l	0.06	0.439	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Vinyl chloride	mg/l	0.002	0.002	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Xylenes, Total	mg/l	10	0.856	<0.00300	< 0.00300	<0.00300	<0.00300	<0.00300

Notes

1. mg/l = Milligrams per liter - parts per million (ppm).

2. Ohio EPA Generic Unrestricted Potable Use Standards (UPUS)

3. USEPA VISL for Residential Land Use

4. Monitoring wells adjacent to IAs due to access issues.

5. IA09 and IA14 overlap.

* : Wells installed by and samples collected by HzW

NSV: Not sufficiently volatile; NIT: No inhalation toxicity.

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detect

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a concentration above a comparison standard. If exceeding more than one s

Laboratory Qualifiers:

J - The identification of the analyte is acceptable; the reported value is an estimate.

J3 - The associated batch QC was outside the establish quality control range for precision.

J4 - The associated batch QC was outside the established quality control range for accuracy.

Partners
P:\Project Files\2093 Cuyahoga County Department of Public Works\2093.10A Eddy-Kirby VAP PII PA\Report\Tables\Excel\Copy of Summary Tables (4,5,6) _Kirby JRK 2

Table 5B: Summary of PAHs, RCRA Metals, and PCBs in Groundwater Eddy-Kirby Parcels, Cleveland, Cuyaboga County, Obio

Eddy-Kirby Parcels, 0	Cleveland	I, Cuyahoga County, Ohio						IA	-01					IA-01A				
Sample ID		VAP Standard	US EPA	P4-IA01-MW01	HzW -01 * ⁴	HzW-01 * ⁴	HzW-01 * ⁴	HzW-04 * ^{4 5}	HzW-04 * ^{4 5}	MW-1 * ^{4 5}	MW-1 * ⁵	MW-3 * ^{4 5}	MW-3 * ^{4 5}	HzW-02 * ⁴	HzW-03 * ⁴	HzW-03 * ⁴		
Collection Date	_			6/28/2023	3/31/2000	10/5/2000	6/8/2004	7/20/2000	6/8/2004	3/31/2000	3/14/2001	3/31/2000	3/14/2001	3/31/2000	3/31/2000	6/8/2004		
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result		
Polynuclear Aromatic Hy	drocarbons	s-PAHs																
Anthracene	mg/l	1.8	NIT	0.0000445 J	ND	ND	ND	ND	ND	ND	NT	ND	NT	ND	ND	ND		
Acenaphthene	mg/l	0.530	NIT	<0.0000500	ND	ND	ND	ND	ND	ND	NT	ND	NT	ND	ND	ND		
Acenaphthylene	mg/l	0.520	NIT	<0.0000500	ND	ND	ND	ND	ND	ND	NT	ND	NT	ND	ND	ND		
Benzo(a)anthracene	mg/l	0.003	NSV	0.0000234	ND	ND	ND	ND	ND	ND	NT	ND	NT	ND	ND	ND		
Benzo(a)pyrene	mg/l	0.200	NSV	<0.0000500	ND	ND	ND	ND	ND	ND	NT	ND	NT	ND	ND	ND ND		
Benzo(b)fluoranthene	mg/l	2.5	NSV	0.0000266	ND	ND	ND	ND	ND	ND	NT	ND	NT	ND	ND ND	ND		
Benzo(g,h,i)perylene	mg/l	0.60	NSV	<0.0000500	ND	ND	ND	ND	ND	ND	NT	ND	NT	ND	ND ND	ND ND		
Benzo(k)fluoranthene	mg/l	0.025	NSV	<0.0000500	ND	ND	ND	ND	ND	ND	NT	ND	NT	ND	ND	ND		
Chrysene	mg/l	0.250	NSV	<0.0000500	ND	ND	ND	ND	ND	ND	NT	ND	NT	ND	ND	ND		
Dibenz(a,h)anthracene	mg/l	0.025	NSV	<0.0000500	ND	ND	ND	ND	ND	ND		ND	NI	ND		ND ND		
Fluoranthene	mg/l	0.80	NSV	0.0000516	ND	ND	ND	ND	ND	ND	NI	ND	NI	ND	ND ND	ND		
Fluorene	mg/l	0.29	NSV	<0.0000500	ND	ND	ND	ND	ND	ND	NI	ND	NI	ND	ND ND	ND		
Indeno(1,2,3-cd)pyrene	mg/l	0.0025	NSV	<0.0000500	ND	ND	ND	ND	ND	ND	NI	ND	NI	ND	ND ND	ND		
Naphthalene	mg/l	0.0017	0.127	<0.000250	ND	ND	ND	ND	ND	ND	NT	ND	NT	ND	ND	ND		
Phenanthrene	mg/l	4.8	NII	0.0000342	ND	ND	ND	ND	ND	ND	NI	ND	NI	ND	ND	ND		
Pyrene	mg/l	0.02	NIT	0.0000506	ND	ND	ND	ND	ND	ND	NT	ND	NT	ND	ND	ND		
1-Methylnaphthalene	mg/l	0.011	NIT	<0.000250	ND	ND	ND	ND	ND	ND	NT	ND	NT	ND	ND	ND		
2-Methylnaphthalene	mg/l	0.036	NII	<0.000250	ND	ND	ND	ND	ND	ND		ND		ND				
2-Chioronaphthalene	mg/i		NII	<0.000250	ND	ND	ND ND	ND	ND	ND			NI	ND				
Areania	<u>x Recovery</u>	ACI (RCRA) & Melais	NUT	NT	NT	I NIT		NT	ND	I NT	I NT		NT	I NT				
Arsenic	mg/i	0.010																
Danum Cadarium	mg/i	2.000				NI			0.0766				NT NT					
	mg/i	0.005	NIT	IN I	IN I	NI			ND	IN I		IN I	IN I	IN I				
Chromium	mg/l	0.100	NII	NI	NI	NI		NI	ND	NI	NI	NI	NI	NI	<u>NI</u>	<u>NI</u>		
Lead	mg/l	0.015	NIT	NT	NT	NT	NT	NT	ND	NT	0.0236	NT	0.0405	NT	NT	NT		
Selenium	mg/l	0.050	NIT	NT	NT	NT	NT	NT	ND	NT	NT	NT	NT	NT	NT	NT		
Silver	mg/l	0.094	NIT	NT	NT	NT	NT	NT	ND	NT	NT	NT	NT	NT	NT	NT		
Polychlorinated Bipheny	ls-PCBs																	
PCB 1016	mg/l	0.0014	NIT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		
PCB 1221	mg/l	0.000047	NIT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		
PCB 1232	mg/l	0.000047	NIT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		
PCB 1242	mg/l	0.00008	NIT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		
PCB 1248	mg/l	0.00008	NIT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		
PCB 1254	mg/l	0.00008	NIT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		
PCB 1260	mg/l	0.00008	NIT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		

Notes:

1. mg/l = Milligrams per liter - parts per million (ppm).

2. Ohio EPA Generic Unrestricted Potable Use Standards (UPUS)

3. USEPA VISL For Residential Land Use

4. Samples anaylzed for SVOCs by SW8270B

5. Monitoring well adjacent to IAs due to access issues.

6. IA09 and IA14 overlap.

* : Wells installed by and samples collected by HzW

NSV: Not sufficiently volatile; NIT: No inhalation toxicity.

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a concentration above a comparison standard. If exceeding more than one standard, the most strict one is highlighted.

Laboratory Qualifiers:

Eddy-Kirby Parcels,	Cleveland	l, Cuyahoga County, Ohio		IA-	01A	IA-03								IA-04	IA-05	IA
Sample ID		VAP Standard	US EPA	MW-2 * ^{4 5}	MW-2 * ⁵	P4-IA03-MW01	HzW-14 * ⁴	HzW-14 * ⁴	HzW-14 * ⁴	HzW-14 * ⁴	HzW-14 * ^{4 5}	HzW-14 * ^{4 5}	HzW-17 * ⁵	P4-IA04-MW01	HzW-10 * ^{4 5}	HzW-11 * ^{4 5}
Collection Date				3/29/2000	3/14/2001	6/28/2023	10/19/2000	11/2/2000	12/21/2000	1/4/2001	6/10/2004	7/1/2004	6/8/2004	6/28/2023	6/9/2004	11/8/2000
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Polynuclear Aromatic Hy	drocarbons	s-PAHs														
Anthracene	mg/l	1.8	NIT	ND	NT	0.0000776	NT	NT	NT	NT	ND	NT	NT	0.0000451 J	ND	ND
Acenaphthene	mg/l	0.530	NIT	ND	NT	0.000167	NT	NT	NT	NT	ND	NT	NT	<0.0000500	ND	ND
Acenaphthylene	mg/l	0.520	NIT	ND	NT	0.0000753	NT	NT	NT	NT	ND	NT	NT	<0.0000500	ND	ND
Benzo(a)anthracene	mg/l	0.003	NSV	ND	NT	0.0000575	NT	NT	NT	NT	ND	NT	NT	<0.0000500	ND	ND
Benzo(a)pyrene	mg/l	0.200	NSV	ND	NT	0.0000324	NT	NT	NT	NT	ND	NT	NT	<0.0000500	ND	ND
Benzo(b)fluoranthene	mg/l	2.5	NSV	ND	NT	0.000056	NT	NT	NT	NT	ND	NT	NT	<0.0000500	ND	ND
Benzo(g,h,i)perylene	mg/l	0.60	NSV	ND	NT	<0.0000500	NT	NT	NT	NT	ND	NT	NT	<0.0000500	ND	ND
Benzo(k)fluoranthene	mg/l	0.025	NSV	ND	NT	0.0000213		NT	NT	NT	ND	NT NT	NT	<0.0000500	ND ND	ND
Chrysene	mg/l	0.250	NSV	ND		0.0000516			NI		ND		NI	<0.0000500	ND	ND
Dibenz(a,n)anthracene	mg/l	0.025	NSV NSV	ND		<0.000500					ND			<0.0000500	ND ND	ND ND
Fluoraninene	mg/l	0.20		ND		0.000245					ND			<0.000100	ND ND	ND ND
	mg/l	0.0025		ND		0.000264								<0.0000500		
Nonhthalana	mg/l	0.0025	0.127	ND		<0.0000500								<0.0000500		
Reportbrone	mg/l	0.0017		ND		0.000203								<0.000250		
Pyropo	mg/l	4.8		ND	NT	0.000303				NT			NT	<0.0000500		
1 Methylpaphthalene	mg/l	0.02		ND	NT	0.000242	NT	NT	NT	NT	ND		NT	<0.0000300	ND	ND
	mg/l	0.011		ND	NT	<0.000104	NT	NT	NT	NT	ND	NT	NT	<0.000250		ND
2-Chloronaphthalene	mg/l	0.000	NIT	ND	NT	<0.000250	NT	NT	NT	NT	ND	NT	NT	<0.000250	ND	ND
Resource Conservation	& Recoverv	Act (RCRA) 8 Metals				0.000200					1 110			0.000200		
Arsenic	mg/l	0.010	NIT	NT	NT	0.0087 J	ND 🍋	ND	ND	ND	ND	ND	ND	< 0.0100	NT	NT
Barium	mg/l	2.000	NIT	NT	NT	0.158	0.0545	0.29	0.253	0.203	0.0932	0.0999	0.155	0.0526	NT	NT
Cadmium	mg/l	0.005	NIT	NT	NT	<0.00200	ND	ND	ND	ND	ND	ND	ND	<0.00200	NT	NT
Chromium	mg/l	0.100	NIT	NT	NT	<0.0100	ND	ND	0.0113	ND	ND	ND	ND	0.00714 J	NT	NT
Lead	mg/l	0.015	NIT	NT	0.0477	0.00417 J	ND	0.134	0.0952	0.0789	ND	ND	ND	0.0136	NT	NT
Selenium	mg/l	0.050	NIT	NT	NT	<0.0100	ND	ND	ND	ND	ND	ND	ND	0.0168	NT	NT
Silver	mg/l	0.094	NIT	NT	NT	<0.00500	ND	ND	ND	ND	ND	ND	ND	<0.00500	NT	NT
Polychlorinated Bipheny	ls-PCBs	-				-								-	-	-
PCB 1016	mg/l	0.0014	NIT	NT	NT	<0.000500	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1221	mg/l	0.000047	NIT	NT	NT	<0.000500	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1232	mg/l	0.000047	NIT	NT	NT	<0.000500	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1242	mg/l	0.00008	NIT	NT	NT	<0.000500	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1248	mg/l	0.00008	NIT	NT	NT	<0.000500	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1254	mg/l	0.00008	NIT	NT	NT	<0.000500	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1260	mg/l	0.00008	NIT	NT	NT	<0.000500	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

Notes:

1. mg/l = Milligrams per liter - parts per million (ppm).

2. Ohio EPA Generic Unrestricted Potable Use Standards (UPUS)

3. USEPA VISL For Residential Land Use

4. Samples anaylzed for SVOCs by SW8270B

5. Monitoring well adjacent to IAs due to access issues.

6. IA09 and IA14 overlap.

* : Wells installed by and samples collected by HzW

NSV: Not sufficiently volatile; NIT: No inhalation toxicity.

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a concentration above a comparison standard. If exceeding more than one standard, the most st

Laboratory Qualifiers:

Eddy-Kirby Parcels, 0	Cleveland	, Cuyahoga County, Ohio		06	IA-07		IA	-09		IA-10						
Sample ID		VAP Standard	US EPA	HzW-11 * ^{4 5}	P4-IA07-MW01	HzW-06 * ^{4 5 6}	HzW-15 * ^{5 6}	HzW-20 * ^{4 5 6}	HzW-20 * ^{4 5 6}	MW-18 * ⁵	MW-18 * ⁵	MW-18 * ⁵	HzW-18 * ^{4 5}	HzW-18 * ^{4 5}	HzW-18 * ^{4 5}	P4-IA11-MW01
Collection Date				6/8/2004	6/28/2023	7/20/2000	6/11/2004	6/1/2001	6/9/2004	2/16/2001	3/2/2001	3/15/2001	6/9/2004	7/1/2004	7/8/2004	6/29/2023
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Polynuclear Aromatic Hy	drocarbons	-PAHs														
Anthracene	mg/l	1.8	NIT	ND	<0.0000500	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.0000500
Acenaphthene	mg/l	0.530	NIT	ND	<0.0000500	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.0000500
Acenaphthylene	mg/l	0.520	NIT	ND	<0.0000500	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.0000500
Benzo(a)anthracene	mg/l	0.003	NSV	ND	<0.0000500	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.0000500
Benzo(a)pyrene	mg/l	0.200	NSV	ND	<0.0000500	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.0000500
Benzo(b)fluoranthene	mg/l	2.5	NSV	ND	<0.0000500	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.0000500
Benzo(g,h,i)perylene	mg/l	0.60	NSV	ND	<0.0000500	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.0000500
Benzo(k)fluoranthene	mg/l	0.025	NSV	ND	<0.0000500	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.0000500
Chrysene	mg/l	0.250	NSV	ND	<0.0000500	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.0000500
Dibenz(a,h)anthracene	mg/l	0.025	NSV	ND	<0.0000500	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.0000500
Fluoranthene	mg/l	0.80	NSV	ND	0.0000523	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.000100
Fluorene	mg/l	0.29	NSV	ND	<0.0000500	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.0000500
Indeno(1,2,3-cd)pyrene	mg/l	0.0025	NSV	ND	<0.0000500	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.0000500
Naphthalene	mg/l	0.0017	0.127	ND	<0.000250	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.000250
Phenanthrene	mg/l	4.8	NIT	ND	0.0000255	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.0000500
Pyrene	mg/l	0.02	NIT	ND	0.0000601	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.0000500
1-Methylnaphthalene	mg/l	0.011	NIT	ND	< 0.000250	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	< 0.000250
2-Methylnaphthalene	mg/l	0.036	NIT	ND	<0.000250	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT	<0.000250
2-Chloronaphthalene	mg/l	0.750	NIT	ND	<0.000250	ND	NT	ND	ND	NT	NT	NT	ND	NT	NT NT	<0.000250
Resource Conservation &	Recovery	Act (RCRA) 8 Metals			•				•	•			•			
Arsenic	mg/l	0.010	NIT	NT	0.00864 J	ND	ND 💊	NT	NT	ND	ND	ND	NT	ND	ND	<0.0100
Barium	mg/l	2.000	NIT	NT	0.154	0.0382	0.124	NT	NT	5.35	4.56	52.2	NT	0.135	0.137	0.112
Cadmium	mg/l	0.005	NIT	NT	0.00063 J	ND	ND	NT	NT	ND	ND	ND	NT	ND	ND	0.000809 J
Chromium	mg/l	0.100	NIT	NT	0.00152 J	0.0106	ND	NT	NT	0.005	ND	ND	NT	ND	ND	0.0023 J
Lead	mg/l	0.015	NIT	NT	0.00713	ND	ND	NT	NT	0.0161	ND	ND	NT	ND	ND	<0.00600
Selenium	mg/l	0.050	NIT	NT	<0.0100	ND 📢	ND	NT	NT	ND	ND	ND	NT	ND	ND	<0.0100
Silver	mg/l	0.094	NIT	NT	<0.00500	ND	ND	NT	NT	ND	ND	ND	NT	ND	ND	<0.00500
Polychlorinated Biphenyl	ls-PCBs				-	-		·		-						-
PCB 1016	mg/l	0.0014	NIT	NT	<0.000500	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1221	mg/l	0.000047	NIT	NT	<0.000500	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1232	mg/l	0.000047	NIT	NT	<0.000500	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1242	mg/l	0.00008	NIT	NT	<0.000500	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1248	mg/l	0.00008	NIT	NT	<0.000500	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1254	mg/l	0.00008	NIT	NT	<0.000500	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB 1260	mg/l	0.00008	NIT	NT	<0.000500	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

Notes:

1. mg/l = Milligrams per liter - parts per million (ppm).

2. Ohio EPA Generic Unrestricted Potable Use Standards (UPUS)

3. USEPA VISL For Residential Land Use

4. Samples anaylzed for SVOCs by SW8270B

5. Monitoring well adjacent to IAs due to access issues.

6. IA09 and IA14 overlap.

 * : Wells installed by and samples collected by HzW

 $\ensuremath{\text{NSV}}$: Not sufficiently volatile; $\ensuremath{\text{NIT}}$: No inhalation toxicity.

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a concentration above a comparison standard. If exceeding more than one standard, the most st

Laboratory Qualifiers:

Eddy-Kirby Parcels, 0	Cleveland	I, Cuyahoga County, Ohio		IA-11		IA I	A-11	IA-12					IA-14		Genera	I Coverage
Sample ID		VAP Standard	US EPA	HzW-05 * ^{4 5}	HzW-19 * ^{4 5}	HzW-07 * ^{4 5}	HzW-21 * ⁴	HzW-21 * ⁴	P4-GC-MW01	Duplicate 3 (P4-GC MW01)						
Collection Date				7/20/2000	11/2/2000	6/16/2001	6/9/2004	6/1/2001	6/16/2001	6/9/2004	7/1/2004	7/20/2000	6/1/2001	6/8/2004	6/29/2023	6/29/2023
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result								
Polynuclear Aromatic Hy	drocarbons	s-PAHs														
Anthracene	mg/l	1.8	NIT	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.0000500	<0.0000500
Acenaphthene	mg/l	0.530	NIT	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.0000500	<0.0000500
Acenaphthylene	mg/l	0.520	NIT	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.0000500	<0.0000500
Benzo(a)anthracene	mg/l	0.003	NSV	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.0000500	<0.0000500
Benzo(a)pyrene	mg/l	0.200	NSV	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.0000500	<0.0000500
Benzo(b)fluoranthene	mg/l	2.5	NSV	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.0000500	<0.0000500
Benzo(g,h,i)perylene	mg/l	0.60	NSV	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.0000500	<0.0000500
Benzo(k)fluoranthene	mg/l	0.025	NSV	ND	NT	NT NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.0000500	<0.0000500
Chrysene	mg/l	0.250	NSV	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.0000500	<0.0000500
Dibenz(a,h)anthracene	mg/l	0.025	NSV	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.0000500	<0.0000500
Fluoranthene	mg/l	0.80	NSV	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.000100	<0.000100
Fluorene	mg/l	0.29	NSV	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.0000500	<0.0000500
Indeno(1,2,3-cd)pyrene	mg/l	0.0025	NSV	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.0000500	<0.0000500
Naphthalene	mg/l	0.0017	0.127	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.000250	<0.000250
Phenanthrene	mg/l	4.8	NIT	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	0.0000465	0.0000392
Pyrene	mg/l	0.02	NIT	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	0.0000278	0.000021
1-Methylnaphthalene	mg/l	0.011	NIT	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.000250	<0.000250
2-Methylnaphthalene	mg/l	0.036	NIT	ND	NT	NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.000250	<0.000250
2-Chloronaphthalene	mg/l	0.750	NIT	ND	NT NT	NT NT	ND	ND	ND	ND	NT	ND	ND	ND	<0.000250	<0.000250
Resource Conservation &	Recovery	Act (RCRA) 8 Metals			1	•	1		1	•			•		-	-
Arsenic	mg/l	0.010	NIT	ND	ND	ND	ND 💊	ND	ND	ND	ND	ND	NT	NT	<0.0100	<0.0100
Barium	mg/l	2.000	NIT	0.276	0.424	0.255	0.139	0.239	0.162	0.22	0.244	0.0545	NT	NT	0.071	0.0724
Cadmium	mg/l	0.005	NIT	ND	NT	NT	0.000643 J	0.000576 J								
Chromium	mg/l	0.100	NIT	ND	ND	ND	ND	0.0065	ND	ND	ND	ND	NT	NT	<0.0100	0.00161 J
Lead	mg/l	0.015	NIT	ND	0.0502	ND	ND	0.0686	0.0272	ND	ND	ND	NT	NT	<0.00600	<0.00600
Selenium	mg/l	0.050	NIT	ND	NT	NT	<0.0100	<0.0100								
Silver	mg/l	0.094	NIT	ND	NT	NT	< 0.00500	<0.00500								
Polychlorinated Bipheny	ls-PCBs	-														
PCB 1016	mg/l	0.0014	NIT	NT	NT	NT	NT	NT								
PCB 1221	mg/l	0.000047	NIT	NT	NT	NT	NT	NT								
PCB 1232	mg/l	0.000047	NIT	NT	NT	NT	NT	NT								
PCB 1242	mg/l	0.00008	NIT	NT	NT	NT	NT	NT								
PCB 1248	mg/l	0.00008	NIT	NT	NT	NT	NT	NT								
PCB 1254	mg/l	0.00008	NIT	NT	NT	NT	NT	NT								
PCB 1260	mg/l	0.00008	NIT	NT	NT	NT	NT	NT								

Notes:

mg/l = Milligrams per liter - parts per million (ppm).

2. Ohio EPA Generic Unrestricted Potable Use Standards (UPUS)

3. USEPA VISL For Residential Land Use

4. Samples anaylzed for SVOCs by SW8270B

5. Monitoring well adjacent to IAs due to access issues.

6. IA09 and IA14 overlap.

* : Wells installed by and samples collected by HzW

NSV: Not sufficiently volatile; NIT: No inhalation toxicity.

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a concentration above a comparison standard. If exceeding more than one standard, the most st

Laboratory Qualifiers:

Eddy-Kirby Parcels,	Cleveland	, Cuyahoga County, Ohio		IA-53	IA-54	IA-56	IA-57	General Coverage	QA/QC
Sample ID		VAP Standard	US EPA	P5-IA53-MW01	P5-IA54-MW01	P5-IA56-MW01	P5-IA57-MW01	P5-GC-MW01	Equipment Blank
Collection Date				6/30/2023	6/29/2023	6/29/2023	6/30/2023	6/29/2023	6/29/2023
Parameter	Units ¹	UPUS ²	VISL ³	Result	Result	Result	Result	Result	Result
Polynuclear Aromatic Hy	drocarbons	-PAHs			•				
Anthracene	mg/l	1.8	NIT	<0.0000500	<0.0000500	<0.0000500	<0.0000500	<0.0000500	<0.0000500
Acenaphthene	mg/l	0.530	NIT	<0.0000500	0.000924	< 0.0000500	< 0.0000500	<0.0000500	<0.0000500
Acenaphthylene	mg/l	0.520	NIT	<0.0000500	<0.0000500	<0.0000500	< 0.0000500	<0.0000500	<0.0000500
Benzo(a)anthracene	mg/l	0.003	NSV	<0.0000500	<0.0000500	<0.0000500	<0.0000500	<0.0000500	<0.0000500
Benzo(a)pyrene	mg/l	0.200	NSV	<0.0000500	<0.0000500	<0.0000500	<0.0000500	<0.0000500	<0.0000500
Benzo(b)fluoranthene	mg/l	2.5	NSV	<0.0000500	<0.0000500	<0.0000500	<0.0000500	<0.0000500	<0.0000500
Benzo(g,h,i)perylene	mg/l	0.60	NSV	<0.0000500	<0.0000500	<0.0000500	<0.0000500	<0.0000500	<0.0000500
Benzo(k)fluoranthene	mg/l	0.025	NSV	<0.0000500	<0.0000500	<0.0000500	<0.0000500	<0.0000500	<0.0000500
Chrysene	mg/l	0.250	NSV	<0.0000500	<0.0000500	< 0.0000500	<0.0000500	<0.0000500	<0.0000500
Dibenz(a,h)anthracene	mg/l	0.025	NSV	<0.0000500	<0.0000500	<0.0000500	<0.0000500	<0.0000500	<0.0000500
Fluoranthene	mg/l	0.80	NSV	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100
Fluorene	mg/l	0.29	NSV	<0.0000500	0.00191	<0.0000500	<0.0000500	<0.0000500	<0.0000500
Indeno(1,2,3-cd)pyrene	mg/l	0.0025	NSV	<0.0000500	<0.0000500	< 0.0000500	<0.0000500	<0.0000500	<0.0000500
Naphthalene	mg/l	0.0017	0.127	<0.000250	0.000786	<0.000250	<0.000250	<0.000250	<0.000250
Phenanthrene	mg/l	4.8	NIT	<0.0000500	0.000833	<0.0000500	<0.0000500	<0.0000500	<0.0000500
Pyrene	mg/l	0.02	NIT	<0.0000500	0.000431	0.0000173	< 0.0000500	<0.0000500	< 0.0000500
1-Methylnaphthalene	mg/l	0.011	NIT	<0.000250	0.0118	<0.000250	<0.000250	<0.000250	<0.000250
2-Methylnaphthalene	mg/l	0.036	NIT	<0.000250	0.000192	<0.000250	<0.000250	<0.000250	<0.000250
2-Chloronaphthalene	mg/l	0.750	NIT	<0.000250	<0.000250	<0.000250	<0.000250	<0.000250	<0.000250
Resource Conservation &	& Recovery	Act (RCRA) 8 Metals			-	-	-	-	
Arsenic	mg/l	0.010	NIT	0.0 <mark>06</mark> 15 J	NT	0.00837 J	0.0104	0.00736 J	<0.0100
Barium	mg/l	2.000	NIT	0.083	NT	0.0298	0.108	0.192	0.0012 J
Cadmium	mg/l	0.005	NIT	<0.00200	NT	<0.00200	<0.00200	<0.00200	<0.00200
Chromium	mg/l	0.100	NIT	0.00303 J	NT	0.00263 J	0.00199 J	0.00384 J	<0.0100
Lead	mg/l	0.015	NIT	<0.00600	NT	<0.00600	<0.00600	0.00425 J	<0.00600
Selenium	mg/l	0.050	NIT 🧹	<0.0100	NT	<0.0100	<0.0100	<0.0100	<0.0100
Silver	mg/l	0.094	NIT	<0.00500	NT	<0.00500	<0.00500	<0.00500	<0.00500
Polychlorinated Bipheny	ls-PCBs					-			
PCB 1016	mg/l	0.0014	NIT	NT	NT	NT	NT	NT	<0.000555
PCB 1221	ma/l	0.000047	NIT	NT	NT	NT	NT	NT	<0.000555
PCB 1232	ma/l	0.000047	NIT	NT	NT	NT	NT	NT	<0.000555
PCB 1242	ma/l	0.0008	NIT	NT	NT	NT	NT	NT	<0.000555
PCB 1248	mg/l	0.00008	NIT	NT	NT	NT	NT	NT	< 0.000555
PCB 1254	mg/l	0.00008	NIT	NT	NT	NT	NT	NT	< 0.000555
PCB 1260	mg/l	0.00008	NIT	NT	NT	NT	NT	NT	< 0.000555
Notes:				U					

1. mg/l = Milligrams per liter - parts per million (ppm).

2. Ohio EPA Generic Unrestricted Potable Use Standards (UPUS)

3. USEPA VISL For Residential Land Use

4. Samples anaylzed for SVOCs by SW8270B

5. Monitoring well adjacent to IAs due to access issues.

6. IA09 and IA14 overlap.

* : Wells installed by and samples collected by HzW

NSV: Not sufficiently volatile; NIT: No inhalation toxicity.

NE: No standard established by applicable agency; NT: Parameter not analyzed for this sample; ND: No Detections

Bold numbers indicate a concentration above laboratory detection limits.

Bold and shaded numbers indicate a concentration above a comparison standard. If exceeding more than one standard, the most st

Laboratory Qualifiers:

Kriby and Eddy Parcels	Clevelan	d Cuvahoga County	Ohio			IA-02		IA-03							10-04	14-05	14-07		-57
Sample ID		Ohio VAP Indoor Air	Ohio VAP Indoor Air Standard	P4-IA02-SV01	01 *	02 *	3 *	4*	P4-IA03-SV01	5*	6 *	7 *	8 *	9 *	P4-IA04-SV01	P4-IA05-SV01	P4-IA07-SV01	P5-IA57-SV01	P5-DUP01
Collection Date		Standard Residential Land Use with Applied	Commercial/Industrial Land Use with Applied	6/27/2023	8/15/2008	8/15/2008	8/15/2008	8/15/2008	6/27/2023	8/15/2008	8/15/2008	8/15/2008	8/15/2008	8/15/2008	6/27/2023	6/27/2023	6/27/2023	6/27/2023	6/27/2023
Parameter	Units ¹	0.03 ²	Attenuation Factor of 0.03 ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatile Organic Compounds	VOCs		L			•			•			•		•	•	•	-	-	
Acetone	ug/m3	1,066,667	4,666,667	43.7	<5,900	<120,000	810	3,100	38.5	2,100	<1,200	2,300	2,300	1,000	70.1	8.6	29.2	<2970	<2,970
Allyl Chloride	ug/m3	33	146	<0.626	<1,300 ^{5 6}	<25,000 56	<25	<250 ^{5 6}	<0.626	<130 ⁵	<250 5 6	<25	<250 5 6	<130 ^{5 6}	<0.626	<0.626	<0.626	<626 ^{5 6}	<626 ⁵
Benzene	ug/m3	120	533	1.52	<1,300 ^{5 6}	<26,000 ^{5 6}	26	320	1.37	130	<260 ^{5 6}	57	<260 ^{5 6}	320	1.47	<0.639	3.9	10,800	10,400
Benzyl Chloride	ug/m3	19	83.3	<1.04	<2,100 ^{5 6}	<42,000 ^{5 6}	<42 ⁵	<420 ^{5 6}	<1.04	<210 ^{5 6}	<420 ^{5 6}	<42 ⁵	<420 ^{5 6}	<210 ^{5 6}	<1.04	<1.04	<1.04	<1040 ^{5 6}	<1040 ⁵⁶
Bromodichloromethane	ug/m3	25	110	<1.34	<2,700 ^{5 6}	<54,000 ^{5 6}	<54 ⁵	600	<1.34	<270 ^{5 6}	<540 ^{5 6}	<54 ⁵	<540 ^{5 6}	<270 56	<1.34	<1.34	<1.34	<1340 ^{5 6}	<1340 ^{5 6}
Bromoform	ug/m3	867	3,667	<6.21	<12,000 ^{5 6}	<250,000 56	<250	<2,500 5	<6.21	<1,200 ⁵	<2,500 5	<250	<2,500 5	<1,200 ⁵	<6.21	<6.21	<6.21	<6210 ⁵⁶	<6210 ⁵⁶
Bromomethane	ug/m3	173	733	<0.776	<1,600 ^{5 6}	<31,000 ^{5 6}	<31	<310 ⁵	<0.776	<160	<310 ⁵	<31	<310 ⁵	<160	<0.776	<0.776	<0.776	<776 ^{5 6}	<776 ^{5 6}
Carbon Disulfide	ug/m3	24,333	103,333	0.688	<1,200	<25,000	56	1,100	<0.622	5,300	900	110	<250	<120	2	<0.622	<0.622	<622	<622
Carbon Tetrachloride	ug/m3	160	680	<1.26	<2,500 ^{5 6}	<50,000 ^{5 6}	<50	<500 5	<1.26	<250 ⁵	<500 5	<50	<500 ⁵	<250 5	<1.26	<1.26	<1.26	<1260 ^{5 6}	<1260 ^{5 6}
Chlorobenzene	ug/m3	1,733	7,333	<0.924	<1,800 ⁵	<37,000b ^{5 6}	<37	<370	<0.924	<180	<370	<37	<370	<180	<0.924	<0.924	<0.924	<924	<924
Chloroethane	ug/m3	333,333	1,466,667	<0.528	<1,100	<21,000	<21	<210	<0.528	<110	<210	<21	<210	<110	<0.528	<0.528	<0.528	<528	<528
Chloroform	ug/m3	41	180	11.4	<1,900 ^{5 6}	<39,000 ^{5 6}	68	2,000	<0.973	<190 ^{5 6}	<390 5 6	<39	<390 ^{5 6}	<190 ^{5 6}	<0.973	<0.973	<0.973	<973 ^{5 6}	<973 ^{5 6}
Chloromethane	ug/m3	3,133	13,000	<0.413	<830	<17,000 ^{5 6}	<17	<170	<0.413	<83	<170	<17	<170	<83	<0.413	<0.413	<0.413	<413	<413
Chlorodibromomethane	ug/m3	NE	NE	<1.70	<3,400	<68,000	<68	<680	<1.70	<340	<680	<68	<680	<340	<1.70	<1.70	<1.70	<1700	<1700
1,2-Dibromoethane	ug/m3	1.57	6.67	<1.54	<3,100 ^{5 6}	<62,000 ^{5 6}	<62 ^{5 6}	<620 ^{5 6}	<1.54	<310 ^{5 6}	<620 5 6	<62 5 6	<620 5 6	<310 56	<1.54	<1.54	<1.54	<1540 ^{5 6}	<1540 ^{5 6}
1,2-Dichlorobenzene	ug/m3	7,000	29,333	<1.20	<2,400	<48,000 ^{5 6}	<48	<480	<1.20	<240	<480	<48	<480	<240	<1.20	<1.20	<1.20	<1200	<1200
1,3-Dichlorobenzene	ug/m3	NE	NE	<1.20	<2,400	<48,000	<48	<480	<1.20	<240	<480	<48	<480	<240	<1.20	<1.20	<1.20	<1200	<1200
1,4-Dichlorobenzene	ug/m3	86.7	367	<1.20	<2,400 ^{5 6}	<48,000 ^{5 6}	<48	<480 ^{5 6}	<1.20	<240 ⁵	<480 5 6	<48	<480 ^{5 6}	<240 ⁵	<1.20	<1.20	<1.20	<1200 **	<1200 56
1,2-Dichloroethane	ug/m3	36	157	<0.810	<1,600 5 6	<32,000 56	<32	<320 5 6	<0.810	<160 ^{5 6}	<620 5 6	<32	<320 5 6	<160 56	<0.810	<0.810	<0.810	<810 ° °	<810 °°
1,1-Dichloroethane	ug/m3	600	2,567	2.77	<1,600 ⁵	<32,000 56	<32	<320	<0.802	<160	<320	<32	<320	<160	<0.802	<0.802	<0.802	<802 °	<802 °
1,1-Dichloroethene	ug/m3	7,000	29,333	<0.793	<1,600	<32,000 56	<32	<320	<0.793	<160	<320	<32	<320	<160	<0.793	<0.793	<0.793	<793	<793
Cis-1,2-Dichloroethene	ug/m3	NE	NE	33	290,000	91,000	230	<320	<0.793	<160	<320	190	<320	<160	1.37	<0.793	<0.793	<793	<793
Trans-1,2-Dichloroethene	ug/m3	NE	NE	7.21	5,900	79,000	67	<360	<0.793	<160	<320	<32	<320	<180	2.56	2.91	<0.793	<793	<793
1,2-Dichloropropane	ug/m3	140	600	<0.924	<1,800 **	<37,000 **	<37	<370 °	<0.924	<180 °	<370 °	<37	<370 °	<180	<0.924	<0.924	<0.924	<924 **	<924 **
Cis-1,3-Dichloropropene	ug/m3	NE	NE	<0.908	<1,800	<36,000	<36	<360	<0.908	<180	<360	<36	<360	<180	<0.908	<0.908	<0.908	<908	<908
I rans-1,3-Dichloropropene	ug/m3	NE	NE	<0.908	<1,800	<36,000	<36	<360	<0.908	<180	<360	<36	<360	<180	<0.908	<0.908	< 0.908	<908	<908
1,4-Dioxane	ug/m3	186	833	<0.721	<1,400 3 8	<29,000 30	<29	<290 ³	<0.721	<140	<290 °	<29	<290 °	<140	<0.721	<0.721	<0.721	<721 *	<721
Ethanol	ug/m3	NE	NE 10.000	79.9	<2,400	<48,000	130	<480	39.4	1,300	1,000	340	1,200	1,700	55.4	10.6	56.2	5370 B	<4710
Ethyl Acetate	ug/m3	2,433	10,333	<0.720	N I	NI	NI -25	NI 1250	<0.720	NI	NI (250	NI 52	N I	N I	<0.720	<0.720	<0.720	<720	<720
	ug/m3	300	1,033	1.71	<1,700 **	<35,000	<35	<350	2.08	<170	<350	52	<350	520	2.74	<0.867	16	8,020	7,670
	ug/m3	NE	NE	1.31	<2,200	<45,000	<45	<450	1.24	<220	<450	<45	<450	<220	2.88	4.15	4.12	<1120	<1120
Dichlorodilluoromethane	ug/m3	NE		1.84	<2,000	<40,000	<40	<400	1.88	<200	<400	<40	<400	<200	1.91	1.36	1.6	<989 J3	<989 J3
	ug/m3	43.3	102 222	<0.73	<13,000	<270,000	<2/0	<2,700	<0.73	<1,300	<2,700	<2/0	<2,700	<1,300	<0.73	<0.73	<0.73	<07.30	<6730
	ug/m2	24,333	60,000	3.01	<1,400	<28,000	<u>660</u>	<200	3.29	<200	050	600	/40	990 <200	<2.22	<2.22	<2.22	<u>86,700</u>	<u>84,600</u>
Methylene Chloride	ug/m3	21,000	86.667	1.11	<2,000	<39,000	<28	<390	<0.983	<200	<390	<39	<390	< <u>200</u>	<0.903	<0.963	<0.963	1,000	1,620
Methyl Butyl Ketone	ug/m3	21,000 NE	NE	<0.094	<10,000	<200,000	<50	<200	<0.094	<1.000	<200	<20	<200	<1 000	<0.094	<0.094	<0.094	<094	<094
2 Butapope (MEK)	ug/m3	173 333	722.222	< 5.11	< 10,000	<200,000	<50	<2,000	~0.11 9.64	<740	<2,000	<200 170	<2,000	<740	< 5.11	< 5.11	< 5.11	<2000	<5110
4 Methyl 2 Pentanone (MIBK)	ug/m3	103 333	/22.222	6.55	<10,400	<100,000	<50	<2,000	-5 12	<1.000	<2,000	<200	<7,000	<1.000	12.9 <5.12	<5.09	3.90	<5090	<5090
4-Methyl Methachylate	ug/m3	24 333	103 333	<0.910	<10,000	<200,000	<30	<2,000	<0.810	<1,000	<2,000	<200	<2,000	<1,000	<0.12	<0.12	<0.910	<910	<910
Methyl Tert-Butyl Ether (MTBE)	ug/m3	3 666	15.667	<0.819	<1,000	<33,000	<20	<200	<0.721	<140	<200	<20	<290	<140	<0.819	<0.819	<0.819	<721	<721
Nanhthalene	ug/m3	28.0	120	5.11	<1 300 56	<29,000 <130,000 ⁵⁶	<130 ⁵⁶	<250 56	110	<660 56	<1 300 56	<130 56	<1 300 56	<660 56	451	<3.30	4.480	<3300 56	<3300 56
Styrene	ug/m3	33,333	146 667	<0.851	<1 700	<34 000 5	<34	<340	<0.851	<170	<280	<34	<340	<140	<0.851	<0.50	2 2/	<851	<851
1 1 2 2-Tetrachloroethane	ug/m3	16	70	<1.37	<2 700 56	<55 000 ⁵⁶	<55 ⁵	<550 56	<1 37	<270 56	<550 56	<54 <55	<550 56	<270 56	<1 37	<1 37	<1 37	<1370 56	<1370 56
Tetrachloroethene	ug/110	1 400	5 800	>1.37 99.4	4 600	<54.000 56	-00 260	<540	<1.37	<270	<540	110	<540	<270	>1.37 29.7	<u> </u>	200	<1360	<1360
Toluene	ug/m3	173 333	733 232	<u>40.1</u>	<1 500	<30,000	120	<200	678	9/0	680	200	640	3 500	£ 10	<u>03.3</u>	524	<1000	<1000
1 2 4-Trichlorobenzene	ug/m3	70	203	6.25	<0 300 ⁵⁶		<100 5	<1 000 56	<4.66	<020 ⁵⁶	< 300 56	<100 ⁵	<1 000 56	<020 ⁵⁶	5.10 66</td <td><1.00</td> <td>53.1 <!-- 66</td--><td><4660 ⁵ 6</td><td><4660 56</td></td>	<1.00	53.1 66</td <td><4660 ⁵ 6</td> <td><4660 56</td>	<4660 ⁵ 6	<4660 56
1 1 1-Trichloroethane	ug/m3	173 333	733 333	<u>\4.00</u>	<2 200	<44.000	500	<440	<1.00	<220	<440	<190	<440	<220	~4.00 5.55	2 50	~4.00 2 57	<1000	<1000
1 1 2-Trichloroethane	ug/m3	60	257	43	~2,200	<44,000	<11	<140 56	<1.09	~220	<140 <140 ⁵⁶	~44	<440 <440 ⁵⁶	~220 <220 ⁵	-1.00	2.39	2.3 /	<1090	<1090
Trichloroethene	ug/m3	70	290	6640	270.000	4.800.000	17.000	<430 ⁵⁶	1.17	1,400	4,100	1,200	1,200	1,000	298	34.2	60.5	<1070 56	<1070 56

Table 6A: Summary of VOCs in Sub-Slab Soil Vapor

Table 6A: Summary of VOCs in Sub-Slab Soil Vapor

Kriby and Eddy Parcels, Cleveland, Cuyahoga County, Ohio						IA-02					IA	-03			IA-04	IA-05	IA-07	IA	-57
Sample ID		Ohio VAP Indoor Air Standard Bosidontial	Ohio VAP Indoor Air Standard	P4-IA02-SV01	01 *	02 *	3 *	4*	P4-IA03-SV01	5*	6 *	7 *	8 *	9 *	P4-IA04-SV01	P4-IA05-SV01	P4-IA07-SV01	P5-IA57-SV01	P5-DUP01
Collection Date		Land Use with Applied	Commercial/Industrial Land Use with Applied	6/27/2023	8/15/2008	8/15/2008	8/15/2008	8/15/2008	6/27/2023	8/15/2008	8/15/2008	8/15/2008	8/15/2008	8/15/2008	6/27/2023	6/27/2023	6/27/2023	6/27/2023	6/27/2023
Parameter	Units ¹	0.03 ²	Attenuation Factor of 0.03 ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Vinyl Acetate	ug/m3	7,000	29,333	<0.704	<1,400	<28,000 5	<28	<280	<0.704	<140	<280	<28	<280	<140	<0.704	<0.704	<0.704	<704	<704
Vinyl Chloride	ug/m3	56	930	<0.511	1,200	<20,000 ^{5 6}	<20	<200 ⁵	<0.511	<100 ^₅	<200 5	<20	<200 ⁵	<100 ⁵	<0.511	<0.511	<0.511	<511 ⁵	<511 ⁵
m&p-Xylene	ug/m3	2 222	14 667	7.59	<3,500 ⁵	<69,000 56	91	<690	4.42	<350	<690	130	<690	1,500	5.77	<1.73	75.9	10,100	9,840
o-Xylene	ug/m3	3,355	14,007	3.69	<1,700	<35,000 5	<35	<350	2.61	<170	<350	42	<350	480	3.38	<0.867	39.7	1,390	1,390
1,2,4-Trimethylbenzene	ug/m3	2,100	8,667	16.7	<2,000	<39,000 56	41	<390	3.77	<200	<390	<39	<390	220	21.1	<0.982	128	6,180	5,740
1,3,5-Trimethylbenzene	ug/m2	2,100	8,667	5.06	<2,000	<39,000 56	<39	<390	1.35	<200	<390	<39	<390	<200	4.77	<0.982	56.4	<982	<982
Notes 1. μg/m3 = micrograms per cubio 2. Ohio VAP Generic Indoor Air S 3. Ohio VAP Generic Indoor Air S 4. Ambient Air Sample - Taken in	: meter. itandards due t Standards due the breating zo	to Vapor Intrusion (Residentia to Vapor Intrusion (Commerci one inside of structure.	l Land Use Category) with appli ial Land Use Category) with app	ed Attenuation Fac	tor of 0.03. actor of 0.03.			8											

5. Reporting limits exceed Ohio VAP Generic Indoor Air Standards due to Vapor Intrusion (Residential land Use Category) with applied Attenuation Factor of 0.03 in bold.

6. Reporting limits exceed Ohio VAP Generic Indoor Air Standards due to Vapor Intrusion (Commercial Land Use Catergory) with applied Attenuation Factor of 0.03nin bold.

* : Samples collected by HzW

NE: No established regulatory limits

Bold numbers indicate a concentration above detection limits.

Bold and shaded numbers indicate a concentration above a comparison standard. If exceeding more than one standard, the most strict one is highlighted.

ND - Parameter not detected above method detection limit

Laboratory Qualifier:

B: The same analyte is found in the associated blank.

J3: The associated batch QC was outside the established quality control range for precision.

Kriby and Eddy Parcels, C	leveland,	, Cuyahoga County	, Ohio	IA-06	IA-09	IA-53	IA-54	IA-55	IA-56
Sample ID		Ohio VAP Indoor Air	Ohio VAP Indoor Air Standard	P4-IA06-VI01	P4-IA09-VI01	P5-IA53-VI01	P5-IA54-VI01	P5-IA55-VI01	P5-IA56-VI01
Collection Date	1	Land Use with	Commercial/Industrial Land Use with Applied	6/27/2023	6/27/2023	6/27/2023	6/27/2023	6/27/2023	6/27/2023
Parameter	Units ¹	Factor of 0.03 ²	Attenuation Factor of 0.03 ³	Result	Result	Result	Result	Result	Result
Volatile Organic Compounds -	VOCs		•			-	-	-	-
Acetone	ug/m3	1,066,667	4,666,667	9.89	3.97	10.8	5.13	<2.97	<2.97
Allyl Chloride	ug/m3	33	146	<0.626	<0.626	<0.626	<0.626	<0.626	<0.626
Benzene	ug/m3	120	533	1.23	<0.639	8.34	2.48	3.96	1.73
Benzyl Chloride	ug/m3	19	83.3	<1.04	<1.04	<1.04	<1.04	<1.04	<1.04
Bromodichloromethane	ug/m3	25	110	<1.34	<1.34	<1.34	<1.34	<1.34	<1.34
Bromoform	ug/m3	867	3,667	<6.21	<6.21	<6.21	<6.21	<6.21	<6.21
Bromomethane	ug/m3	173	733	<0.776	<0.776	<0.776	<0.776	<0.776	<0.776
Carbon Disulfide	ug/m3	24,333	103,333	3.21	21.7	113	17.4	45.4	6.01
Carbon Tetrachloride	ug/m3	160	680	<1.26	<1.26	<1.26	<1.26	<1.26	1.7
Chlorobenzene	ug/m3	1,733	7,333	<0.924	<0.924	<0.924	<0.924	<0.924	<0.924
Chloroethane	ug/m3	333,333	1,466,667	<0.528	<0.528	<0.528	<0.528	<0.528	<0.528
Chloroform	ug/m3	41	180	<0.973	<0.973	<0.973	<0.973	2.22	4.87
Chloromethane	ug/m3	3,133	13,000	0.907	<0.413	1.09	<0.413	<0.413	0.483
Chlorodibromomethane	ug/m3	NE	NE	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70
1.2-Dibromoethane	ua/m3	1.57	6.67	<1.54	<1.54	<1.54	<1.54	<1.54	<1.54
1.2-Dichlorobenzene	ua/m3	7,000	29.333	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20
1.3-Dichlorobenzene	ua/m3	NE	NE	<1 20	<1 20	<1 20	<1.20	<1 20	<1.20
1.4-Dichlorobenzene	ua/m3	86.7	367	<1 20	<1 20	<1 20	<1.20	<1 20	<1.20
1 2-Dichloroethane	ug/m3	36	157	<0.810	<0.810	<0.810	<0.810	<0.810	<0.810
1 1-Dichloroethane	ug/m3	600	2.567		<0.802	0.886	<0.802	<0.802	<0.802
1 1-Dichloroethene	ug/m3	7 000	29.333	<0.703	<0.002	<0.703	<0.002	<0.002	<0.703
Cis-1 2-Dichloroethene	ug/m3	NE	NF	<0.703	2 52	3 79	<0.793	<0.793	1 15
Trans-1 2-Dichloroethene	ug/m3	NE	NE	<0.793	<0 703	0.86	<0.793	<0.793	<0.793
1 2-Dichloropropane	ug/m3	140	600	<0.795	<0.795	<0.924	<0.735	<0.795	<0.795
Cis-1 3-Dichloropropene	ug/m3	NE	NE	<0.924	<0.924	<0.924	<0.924	<0.924	<0.924
Trans-1 3-Dichloropropene	ug/m3	NE	NE	<0.900	<0.900	<0.908	<0.900	<0.900	<0.900
	ug/m3	186	833	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Ethanol	ug/m3	NE	NE	486	<0.721	29.2	7 66	<0.721	<0.721
	ug/m3	2 433	10.222	4.00	<9.71	<0.720	1.00	<4.71	<9.71
Ethylbonzono	ug/m3	2,455	1 622	<0.720	<0.720	<0.720	1.00	<0.720	<0.720
	ug/m2	500	1,035 NE	<0.007	<0.007	3.24	1.20	2.14	<0.007
Dishlaradifluaramethana	ug/m3	NE	NE	1.16	<1.12	<1.12	2.45	9.44	2.48
Hexaeblere 1.2 Putediene	ug/m2	12 2	187	9.35	1.34	2.11 J3	2.5 J3	2.13	1.05
	ug/m3	43.3	107	< 0.73	<0.73	<0.73	< 0.73	< 0.73	< 0.73
	ug/m3	24,333	103,333	<2.22	<2.22	26.4	<2.22	21.2	<2.22
Nothylana Chlarida	ug/m3	14,000	00,000	<0.983	<0.983	1.31	<0.983	1.1	< 0.983
Methylene Chlonde	ug/ms	21,000	00,007	1.59	<0.694	<0.694	<0.694	<0.694	<0.694
	ug/m3	NE (72, 222)	NE	<5.11	<5.11	<5.11	<5.11	<5.11	<5.11
	ug/ms	173,333	/33,333	<3.69	<3.69	<3.69	<3.69	<3.69	<3.69
4-Methyl-2-Pentanone (MIBK)	ug/m3	103,333	433,333	<5.12	<5.12	<5.12	<5.12	<5.12	<5.12
Methyl Methacrylate	ug/m3	24,333	103,333	< 0.819	<0.819	< 0.819	< 0.819	< 0.819	<0.819
New Managers	ug/m3	3,000	15,667	<0.721	<0.721	<0.721	<0.721	<0.721	<0.721
	ug/m3	28.0	120	<3.30	29.5	<3.30	<3.30	254	<3.30
Styrene	ug/m3	33,333	146,667	<0.851	<0.851	4.72	4.68	<0.851	<0.851
1,1,2,2-1 etrachloroethane	ug/m3	16	70	<1.37	<1.37	<1.37	<1.37	<1.37	<1.37
I etrachloroethene	ug/m3	1,400	5,800	3.01	13,200	7.47	11.2	451	658
Ioluene	ug/m3	173,333	733,333	<1.88	2.4	9.45	5.54	6.22	<1.88
1,2,4-Trichlorobenzene	ug/m3	70	293	<4.66	<4.66	<4.66	<4.66	<4.66	<4.66
1,1,1-Trichloroethane	ug/m3	173,333	733,333	<1.09	29.4	<1.09	<1.09	1.52	17.1
1,1,2-Trichloroethane	ug/m3	60	257	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09
Trichloroethene	ug/m3	70	290	<1.07	168	6.32	1.1	111	43.3

Table 6B: Summary of VOCs in Soil Gas

Kriby and Eddy Parcels	, Cleveland	, Cuyahoga County	, Ohio	IA-06	IA-09	IA-53	IA-54	IA-55	
Sample ID		Ohio VAP Indoor Air	Ohio VAP Indoor Air Standard	P4-IA06-VI01	P4-IA09-VI01	P5-IA53-VI01	P5-IA54-VI01	P5-IA55-VI01	P5-I
Collection Date		Land Use with	Commercial/Industrial Land Use with Applied	6/27/2023	6/27/2023	6/27/2023	6/27/2023	6/27/2023	6/
Parameter	Units ¹	Factor of 0.03 ²	Attenuation Factor of 0.03 ³	Result	Result	Result	Result	Result	
Volatile Organic Compound	s - VOCs	-					-		
Vinyl Acetate	ug/m3	7,000	29,333	<0.704	<0.704	<0.704	<0.704	<0.704	
Vinyl Chloride	ug/m3	56	930	<0.511	<0.511	0.603	<0.511	<0.511	
m&p-Xylene	ug/m3	2 2 2 2	14 667	<1.73	<1.73	7.72	2.22	7.33	
o-Xylene	ug/m3	- 3,333	14,007	<0.867	<0.867	4.16	2.29	3.62	
1,2,4-Trimethylbenzene	ug/m3	2,100	8,667	<0.982	<0.982	3.62	<0.982	10.2	
1,3,5-Trimethylbenzene	ug/m2	2,100	8,667	<0.982	<0.982	1.19	<0.982	3.98	
Notes									

1. μg/m3 = micrograms per cubic meter.

2. Ohio VAP Generic Indoor Air Standards due to Vapor Intrusion (Residential Land Use Category) with applied Attenuation Factor of 0.03.

3. Ohio VAP Generic Indoor Air Standards due to Vapor Intrusion (Commercial Land Use Category) with applied Attenuation Factor of 0.03.

NE: No established regulatory limits

B: The same analytre is found in the associted blank.

Bold numbers indicate a concentration above detection limits.

Bold and shaded numbers indicate a concentration above a comparison standard. If exceeding more than one standard, the most strict one is highlighted.

IA-56
A56-VI01
27/2023
Result
<0.704
<0.511
<1.73
<0.867
<0.982
<0.982

		Applicable	Standards			
Chemical of Conce	ern	VAP GDCS Restricted Residential Land Use ¹ , Non-Carcinogens \ (2' bgs ⁴)	VAP GDCS Restricted Residential Land Use ² , Carcinogens (2' bgs ⁴)	Exposure Point Concentration	Non-Cancer Hazard Quotient ³	Cancer Risk Ratio ³
VOCs						
Acetone	mg/kg	120,000	NC	0.581	0.0000048	-
sec-Butylbenzene	mg/kg	16,000	NC	4.56	0.0002850	-
1,1-Dichloroethane	mg/kg	31,000	89	0.00523	0.0000002	-
cis-1.2-Dichloroethene	ma/ka	310	NC	1.15	0.0037097	-
Isopropylbenzene	mg/kg	4,600	NC	0.0217	0.0000047	-
p-Isopropyltoluene	mg/kg	2,100	NC	23.7	0.0112857	-
Methylene Chloride	mg/kg	740	1,200	1.34	0.0018108	0.0011167
Methyl tert-butyl ether (MTBE)	mg/kg	39,000	1,100	0.0025	0.0000001	-
Naphthalene	mg/kg	320	96	1.72	0.0053750	-
n-Propylbenzene	mg/kg	7,500	NC	0.0244	0.0000033	-
Styrene	mg/kg	14,000	NC	0.00139	0.0000001	-
Tetrachloroethene (PCE)	mg/kg	190	580	8.13	0.0427895	0.0140172
Toluene	mg/kg	10,000	NC	0.0549	0.0000055	-
1,1,1-Trichloroethane	mg/kg	20,000	NC	1.94	0.0000970	-
Trichloroethene (TCE)	mg/kg	10	24	20	2.0000000	0.8333333
Trichlorofluoromethane	mg/kg	47,000	NC	0.0291	0.000006	-
1,2,4-Trimethylbenzene	mg/kg	690	NC	26.3	0.0381159	-
1,3,5-Trimethylbenzene	mg/kg	620	NC	31.6	0.0509677	-
Xylenes, Total	mg/kg	1,300	NC	1.81	0.0013923	-
PAHs						
Acenaphthene	mg/kg	7,200	NC	2.38	0.0003306	-
Acenaphthylene	mg/kg	7,200	NC	1.53	0.0002125	-
Benzo(a)anthracene	mg/kg	NA	23	11.3	-	0.4913043
Benzo(a)pyrene	mg/kg	36	2.3	11.2	0.3111111	4.8695652
Benzo(b)fluoranthene	mg/kg	NA	23	13.5	-	0.5869565
Benzo(g,h,i)perylene	mg/kg	3,600	NC NC	4.42	0.0012278	-
Benzo(k)fluoranthene	mg/kg	NA	230	3.34		0.0145217
Chrysene	mg/kg	NA	2,300	9.22	-	0.0040087
Dibenz(a,h)anthracene	mg/kg	NA	2.3	1.21	-	0.5260870
Fluoranthene	mg/kg	4,800	NC	29.2	0.0060833	-
Fluorene	mg/kg	4,800	NC	2.95	0.0006146	•
Indeno(1,2,3-cd)pyrene	mg/kg	NA	1,300	8.38	-	0.0064462
Naphthalene	mg/kg	320	96	5.97	0.0186563	0.0621875
Phenanthrene	mg/kg	36,000	NC	23.1	0.0006417	-
Pyrene 4 Mathula an https://www.	mg/kg	3,600	NC	18.8	0.0052222	-
1-ivietnyinaphthalene	mg/kg	6,400	350	1./5	0.0002083	0.0050000
2-Methylnaphthalene	mg/kg	480	NC	3.26	0.0067917	-
RCRA metals						
Arsenic	mg/kg	70	14	89.8	1.282857143	6.41428571
Barium	mg/kg	30,000	NC	1,930	0.0643333	-
	mg/kg	140	30,000	2.51	0.0179286	0.0000837
	mg/kg	NA	NC	1,160	-	-
Lead	mg/kg	NA 700	NC	1,540	-	-
Selenium	mg/kg	/80	NC	1.39	0.0017821	-
Silver	mg/kg	/80	NC	1.83	0.0023462	-
mercury	mg/kg	9.9	NC	0.212	0.0214141	-
		Direct Col	ntact Cumulative Risk Rat	io	3.89761	13.82891

Table 7A: Soil Direct Contact Risk for Residnetial Land Use Eddy-Kirby Parcels, Cleveland, Cuyahoga County, Ohio

Notes NC = Non Carcinogenic

NC = Kon Carcinogenc
 Onio VAP GDCS Commercial/Industrial Land Use for Single Chemical Non-Carcinogens
 Onio VAP GDCS Commercial/Industrial Land Use for Single Chemical Carcinogens
 Cumulative multiple chemical adjustment calculation.
 Residential Land Use 10' below ground surface maximum.

Table 7B: Soil Direct Contact Risk for Commercial/Industrial Land use Eddy-Kirby Parcels, Cleveland, Cuyahoga County, Ohio

Chemical of Concern		Applicable	Standards			
		VAP GDCS Commercial/Indtustri al Land Use ¹ , Non- Carcinogens (2' bgs ⁴)	VAP GDCS Commercial/Indust rial Land Use ² , Carcinogens (2' bqs ⁴)	Exposure Point Concentration	Non-Cancer Hazard Quotient ³	Cancer Risk Ratio ³
VOCs, PAHs, Metals						
Acetone	mg/kg	1,000,000	NC	0.581	0.0000006	-
sec-Butylbenzene	mg/kg	470,000	NC	4.56	0.0000097	-
1,1-Dichloroethane	mg/kg	930,000	390	0.00523	0.0000000	-
cis-1,2-Dichloroethene	mg/kg	9,300	NC	1.15	0.0001237	-
Isopropylbenzene	mg/kg	26,000	NC	0.0217	0.0000008	-
p-lsopropyltoluene	mg/kg	9,300	NC	23.7	0.0025484	-
Methylene Chloride	mg/kg	9,500	33,000	1.34	0.0001411	0.0000406
Methyl tert-butyl ether (MTBE)	mg/kg	160,000	5,400	0.0025	0.0000000	-
Naphthalene	mg/kg	1,500	420	1.72	0.0011467	-
n-Propylbenzene	mg/kg	59,000	NC	0.0244	0.0000004	-
Styrene	mg/kg	93,000	NC	0.00139	0.0000000	-
Tetrachloroethene (PCE)	ma/ka	1.000	2.700	8.13	0.0081300	0.0030111
Toluene	ma/ka	140 000	NC	0.0549	0.0000004	-
1 1 1-Trichloroethane	ma/ka	90,000	NC	1.94	0.0000216	-
Trichloroethene (TCE)	ma/ka	48	160	20	0.4166667	0.1250000
Trichlorofluoromethane	mg/kg	1,000,000	NC	0.0291	0.0000000	-
1,2,4-Trimethylbenzene	mg/kg	4,700	NC	26.3	0.0055957	-
1.3.5-Trimethylbenzene	ma/ka	4.000	NC	31.6	0.0079000	-
Xylenes, Total	mg/kg	5,600	NC	1.81	0.0003232	-
Anthracene	ma/ka	670.000	NA	5.46	0.0000081	-
Acenaphthene	ma/ka	1.000.000	NC	2.38	0.0000024	-
Acenaphthylene	ma/ka	130,000	NC	1.53	0.0000118	-
Benzo(a)anthracene	ma/ka	NA	610	11.3	-	0.0185246
Benzo(a)pvrene	ma/ka	640	62	11.2	0.0175000	0.1806452
Benzo(b)fluoranthene	mg/kg	NA	620	13.5	-	0.0217742
Benzo(g.h.i)pervlene	ma/ka	67.000	NC	4.42	0.0000660	
Benzo(k)fluoranthene	ma/ka	NA	6.200	3.34		0.0005387
Chrvsene	ma/ka	NA	62.000	9.22	-	0.0001487
Dibenz(a,h)anthracene	ma/ka	NA	62.0	1.21	-	0.0195161
Fluoranthene	ma/ka	89.000	NC	29.2	0.0003281	
Fluorene	ma/ka	89.000	NC	2.95	0.0000331	-
Indeno(1.2.3-cd)pyrene	ma/ka	NA	620	8.38	-	0.0135161
Naphthalene	ma/ka	1.500	420	5.97	0.0039800	0.0142143
Phenanthrene	ma/ka	670.000	NC	23.1	0.0000345	
Pvrene	ma/ka	67.000	NC	18.8	0.0002806	-
1-Methylnaphthalene	ma/ka	160.000	2.100	1.75	0.0000109	0.0008333
2-Methylnaphthalene	ma/ka	8 900	NA	3.26	0.0003663	-
Arsenic	ma/ka	1 600	100	90	0.0561250	0.8980000
Barium	ma/ka	760.000	CN	1,930	0.0025395	-
Cadmium	ma/ka	3,300	130 000	656	0.1987879	0.0050462
Chromium	ma/ka	NA	NC	1,160	-	-
Lead	ma/ka	NA	NC	1,540	-	<u> </u>
Selenium	ma/ka	23,000	NC	1,39	0.0000604	
Silver	ma/ka	23,000	NC	1.83	0.0000796	
Mercury	ma/ka	92	NC	0.212	0.0023043	-
Notos	mgmg			U VI212	0.0020070	
NC = Non Carcinogenic		Direct Cor	ntact Cumulative Ris	sk Ratio	0.72513	1.30081

1. Ohio VAP GDCS Commercial/Industrial Land Use for Single Chemical Non-Carcinogens

2. Ohio VAP GDCS Commercial/Industrial Land Use for Single Chemical Carcinogens

3. Cumulative multiple chemical adjustment calculation.

4. Residential Land Use 10' below ground surface maximum.

		Applicable	Standards			
Chemical of Conce	ern	VAP GDCS Construction/Excavation Activities ¹ , Non- Carcinogens (10' bgs ⁴)	VAP GDCS Construction/ Excavations Activities ² , Carcinogens (10' bgs ⁴)	Exposure Point Concentration	Non-Cancer Hazard Quotient ³	Cancer Risk Ratio ³
VOCs						
Acetone	mg/kg	1.000.000	NC	0.581	0.0000006	-
n-Butvlbenzene	ma/ka	240.000	NC	0.0871	0.0000004	-
sec-Butylbenzene	ma/ka	240.000	NC	4.56	0.0000190	-
1 1-Dichloroethane	ma/ka	1 000 000	3 600	1.82	0.0000018	0.0005056
1 1-Dichloroethene	ma/ka	360	NC	2.28	0.0063333	-
cis-1 2-Dichloroethene	ma/ka	49 000	NC	29.9	0.0006102	-
Ethylbenzene	ma/ka	190,000	6.100	4010	0.0211053	0 6573770
Hexachloro-1.3-butadiene	ma/ka	2.400	1,300	0.0449	0.0000187	0.0000345
Isopropylbenzene	ma/ka	88.000	NC	453	0.0051477	-
p-Isopropyltoluene	ma/ka	10.000	NC	23.7	0.0023700	-
Methylene Chloride	mg/kg	8,600	360,000	1.34	0.0001558	0.0000037
Methyl tert-butyl ether (MTBE)	mg/kg	46,000	50,000	0.0025	0.0000001	0.0000001
Naphthalene	ma/ka	560	3,800	1.89	0.0033750	0.0004974
n-Propylbenzene	ma/ka	24.000	NC	0.0244	0.0000010	-
Styrene	ma/ka	110.000	NC	0.00761	0.0000001	-
1.1.2.2-Tetrachloroethane	ma/ka	120.000	670	0.109	0.0000009	0.0001627
Tetrachloroethene (PCE)	ma/ka	380	25.000	51	0.1342105	0.0020400
Toluene	ma/ka	82.000	NC	204	0.0024878	-
1.1.1-Trichloroethane	ma/ka	33.000	NC	337	0.0102121	-
Trichloroethene (TCE)	mg/kg	17	1,500	518	30.4705882	0.3453333
Trichlorofluoromethane	mg/kg	730,000	NC	0.0291	0.0000000	-
1,2,4-Trimethylbenzene	mg/kg	6,000	NC	26.3	0.0043833	-
1,3,5-Trimethylbenzene	mg/kg	5,000	NC	31.6	0.0063200	-
Vinyl chloride	mg/kg	280	490	0.0109	0.0000389	0.0000222
Xylenes, Total	mg/kg	6,200	NC	20260	3.2677419	-
PAHs						
Anthracene	mg/kg	1,000,000	NC	5.46	0.0000055	-
Acenaphthene	mg/kg	290,000	NC	2.38	0.0000082	-
Acenaphthylene	mg/kg	290,000	NC	1.53	0.0000053	-
Benzo(a)anthracene	mg/kg	NA	9,600	20.5	-	0.0021354
Benzo(a)pyrene	mg/kg	230	1,000	17.3	0.0752174	0.0173000
Benzo(b)fluoranthene	mg/kg	NA	10,000	19.9	-	0.0019900
Benzo(g,h,i)perylene	mg/kg	430,000	NC	9.06	0.0000211	-
Benzo(k)fluoranthene	mg/kg	NA	100,000	7.27	-	0.0000727
Chrysene	mg/kg	NA	1,000,000	18.2	-	0.0000182
Dibenz(a,h)anthracene	mg/kg	NA	1,000.0	3.58	•	0.0035800
Fluorantnene	mg/kg	170,000	NC	44.9	0.0002641	-
Fluorene	mg/kg	580,000	NC 10.000	2.95	0.0000051	-
Indeno(1,2,3-cd)pyrene	mg/kg	NA 500	10,000	12.8	-	0.0012800
Reporterono	mg/kg	1 000 000	3,800	0.97	0.0106607	0.0015/11
Prienanurirene	mg/kg	1,000,000	NC	23.1	0.0000231	-
A Mathula an https://www.	mg/kg	430,000	25.000	31.7	0.0000737	-
2 Mothylnaphthalono	mg/kg	100,000 5 800	35,000	1./5	0.0000175	0.0000500
RCRA Motals	тту/ку	3,000		5.20	0.0003021	-
Amonio		760	1 400	00.0	0 4404570	0.0644420
Resium	mg/kg	250.000	1,400	6570	0.11815/9	0.0041429
Cadmium	mg/kg	710	95.000	3.95	0.010//14	-
Chromium	mg/kg		90,000 NC	3.95	0.0033034	0.0000410
Lead	mg/kg	NA NA	NC	14200	-	-
Selenium	mg/kg	12 000	NC	2 29	-	-
Silver	mg/kg	12,000	NC	4.43	0.0001908	
Mercury	mg/kg	36	NC	0.543	0.0150832	
Arcolor 1260	ma/ka	NA	450	0.532	-	0.0011822
	inging			0.002		0.0011022
		Direct Cor	ntact Cumulative Risk Ratio)	34.17975	1.09934

Table 7C: Soil Direct Contact Risk for Commercial/Industrial Land use Eddy-Kirby Parcels, Cleveland, Cuyahoga County, Ohio

Notes NC = Non Carcinogenic 1. Ohio VAP GDCS Commercial/Industrial Land Use for Single Chemical Non-Carcinogens

2. Ohio VAP GDCS Commercial/Industrial Land Use for Single Chemical Carcinogens
 3. Cumulative multiple chemical adjustment calculation.
 4. Residential Land Use 10' below ground surface maximum.

Virginia Department of Environmental Quality

Virginia Unified Risk Assessment Model

VERSION: 3.2.1

Construction Worker Quantitative Risk Assessment Report

Site Name: Kirby - Eddy Construction Excavation Inahalation

Program: Voluntary Remediation Program

Contact Depth to Groundwater: Direct Less than 15ft

By submitting this report to the Virginia DEQ, the user confirms that VURAM's default exposure parameters have not been altered, unless a complete unaltered VURAM analysis is provided and all modifications are detailed explicitly in an accompanying narrative or documentation that shows DEQ's prior concurrence with specific changes.

Chemical Specific Notes displayed as applicable

All Report Pages are Required for Risk Assessment Submission

Site Name:	Kirby - Ed	ddy Constru	iction Excav	ation Inahalation		Constructior
Program:	Voluntar	y Remediat	ion Program	า		
			<u>Risk Ba</u>	ased Performance Criteria		
D	efault Haza	rd Index	Default	Risk Individual Chemical	Default Cumulative Ri	sk-All Chemicals
	1			1.00E-05	1.00E-C)5
		Contact	Depth to Gro	undwater: Direct Less than	15ft	
Groun	ndwat	ter				
Analyte [.]	Dichloroe	othane 11-				
CAS:	75-34-3					
Concentration	µg/L :	4.71E-01		Calculated H	lazard/Risk	
RfDo:		2.00E+00	Non-Ca	ancer Adult	Ca	incer
RfCi:			Ingestion:	2.10E-08	Ingestion:	3.28E-12
SFO:		5.70E-03	Dermal:		Dermal:	
IUR:		1.60E-06	Inhalation:		Inhalation:	5.10E-09
Mutagen:			Total:	2.10E-08	Total:	5.11E-09
VOC:		Y				
% Contributio	n to Media R	isk		0.00%		0.22%
Analyte:	Dichloroe	ethane, 1,2-				
CAS:	107-06-2	5 495 99				
Concentration	µg/L :	5.42E-03		Calculated H	lazard/Risk	
		2.00E-02	Non-Ca	ancer Adult	Ca	incer
		7.00E-02	Ingestion:	2.42E-08	Ingestion:	6.03E-13
		9.10E-02	Dermai:		Dermai:	0.405.40
IUK:		2.00E-05	innalation:	3.08E-05		9.18E-10
work		v	iotai:	3.08E-U5	i otal:	9.19E-10
	- + - 14 11	Υ Y		0.000/		0.040/
- V_ I ONTRIBUTION				0.00%		0.04%

Analyte: Dichloroethylene, 1,1-

CAS:	75-35-4						
Concentra	ition μg/L :	5.27E-02			Calculated Hazard/Risk		
RfDo:		9.00E-03	Non-Ca	ncer Adult			Cancer
RfCi:		2.00E-01	Ingestion:	5.23E-07	In	gestion:	
SFO:			Dermal:		De	ermal:	
IUR:			Inhalation:	1.33E-04	In	halation:	
Mutagen:			Total:	1.33E-04	Тс	otal:	0.00E+00
VOC:		Y					
% Contrib	ution to Media R	isk	-	0.00%			0.00%

Site Name:	Kirby - E	ddy Constru	uction Excav	ation Inahalation		Construction
Program:	Volunta	ry Remedia [.]	tion Program	n		
_	c 1		<u>Risk B</u>	ased Performance Criteria		
D	efault Haza	ard Index	Detaul	1 OOF OF	Default Cumulative I	Risk-All Chemicals
	1	.		1.00E-05	1.005	-05
		Contact	Depth to Gro	oundwater: Direct Less that	an 15ft	
Grour	ndwa [.]	ter				
Analyte:	Dichloro	utur a ci	c_1 7_			
CAS.	156 50 2	etitylelle, ci	5-1,2-			
CAS:	120-29-2]			
Concentration	ιμg/L :	6.30E+01		Calculated	Hazard/Risk	
RfDo:		2.00E-02	Non-C	ancer Adult	(Cancer
RfCi:			Ingestion:	2.81E-04	Ingestion:	
SFO:			Dermal:		Dermal:	
IUR:			Inhalation:		Inhalation:	
Mutagen:			Total:	2.81E-04	Total:	0.00E+00
VOC:		Y				
% Contributio	n to Media I	Risk		0.00%		0.00%
Analyta	Dichloro	athylana tr	ans_1 7_			
CAS.	156-60-5	etinyiene, ti	ans-1,2-			
	150-00-5		1			
Concentration	ιμg/L :	2.50E+00		Calculated	Hazard/Risk	
RfDo:		2.00E-01	Non-C	ancer Adult	(Cancer
RtCi:		7.93E-01	Ingestion:	1.12E-06	Ingestion:	
SFO:			Dermal:	\mathbf{O}	Dermal:	
IUR:			Inhalation:	1.58E-03	Inhalation:	
Mutagen:			Total:	1.58E-03	Total:	0.00E+00
VOC:		Y				
% Contributio	n to Media F	Risk		0.01%		0.00%
Analyte:	Methylna	aphthalene.	, 1-			
CAS:	90-12-0		¬			
Concentration	ιμg/L :	1.18E-02		Calculated	Hazard/Risk	

1.0,			Calc		
RfDo:	7.00E-02	Non-Ca	incer Adult	Can	cer
RfCi:	1.04E+00	Ingestion:	1.51E-08	Ingestion:	4.19E-13
SFO:	2.90E-02	Dermal:		Dermal:	
IUR:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.51E-08	Total:	4.19E-13
VOC:	Y				
% Contribution to Mea	lia Risk		0.00%	0.	00%

Program:	Voluntary	/ Remedia	tion Program <u>Risk Ba</u>	sed Performance Criteria		
De	efault Hazar	d Index	Default	Risk Individual Chemical	Default Cumulative Ri	sk-All Chemicals
	1			1.00E-05	1.00E-0)5
		Contact	Depth to Grou	Indwater: Direct Less thar	15ft	
Analyte:	Tetrachlor	er oethane, :	1,1,1,2-			
CAS:	630-20-6		1			
CAS: Concentration	630-20-6 μg/L :	9.52E-02		Calculated F	lazard/Risk	
CAS: Concentration RfDo:	630-20-6 μg/L :	9.52E-02 9.00E-02	Non-Ca	Calculated H	lazard/Risk Ca	incer
CAS: Concentration RfDo: RfCi:	630-20-6 μg/L :	9.52E-02 9.00E-02	Non-Ca Ingestion:	Calculated H ncer Adult 9.44E-08	lazard/Risk Ca Ingestion:	incer 3.03E-12
CAS: Concentration RfDo: RfCi: SFO:	630-20-6 μg/L :	9.52E-02 9.00E-02 2.60E-02	Non-Ca Ingestion: Dermal:	Calculated H ncer Adult 9.44E-08	lazard/Risk Ca Ingestion: Dermal:	ancer 3.03E-12

% Contribution to Media Risk

Mutagen:

VOC:

0.00%

9.44E-08

Total:

Y

Analyte:	Tetrachlor	oethylene				
CAS:	127-18-4					
Concentratio	on μg/L :	8.37E-01		Calculat	ed Hazard/Risk	
RfDo:		8.00E-03	Non-C	Cancer Adult		Cancer
RfCi:		4.07E-02	Ingestion:	9.34E-06	Ingestion:	2.15E-12
SFO:		2.10E-03	Dermal:		Dermal:	
IUR:		2.60E-07	Inhalation:	7.91E-03	Inhalation:	1.15E-09
Mutagen:			Total:	7.92E-03	Total:	1.15E-09
VOC:		Y				
% Contributi	on to Media Ri	sk		0.04%		0.05%

Analyte: Trichloroethane, 1,1,1-

CAS:	71-55-6
CAJ.	11-22-0

Concentration µg/L :	5.21E-01			Calculated Hazard/Risk	
RfDo:	7.00E+00	Non-Ca	ncer Adult	Cancer	
RfCi:	5.00E+00	Ingestion:	6.65E-09	Ingestion:	
SFO:		Dermal:		Dermal:	
IUR:		Inhalation:	4.47E-05	Inhalation:	
Mutagen:		Total:	4.47E-05	Total: 0.0	0E+00
VOC:	Y				
% Contribution to Madia	Dick		0.000/	0.00%	

% Contribution to Media Risk

0.00%

Total:

3.63E-09

0.16%

Site Name:	Kirby - E	ddy Constr	uction Excava	ation Inahalation		Constructior
Program:	Voluntai	ry Remedia	tion Program	ı		
-			<u>Risk Ba</u>	ased Performance Criteria		
D	efault Haza	rd Index	Default	Risk Individual Chemical	Default Cumulative Ri	isk-All Chemicals
	1			1.00E-05	1.00E-C)5
		Contact	Depth to Gro	undwater: Direct Less thar	15ft	
Groun	dwat	tor				
Analyta		athylono				
Analyte.		ethylene				
CAS:	79-01-6]			
Concentration	μg/L :	9.30E+01		Calculated H	lazard/Risk	
RfDo:		5.00E-04	Non-Ca	incer Adult	Ca	ancer
RfCi:		2.15E-03	Ingestion:	1.66E-02	Ingestion:	5.23E-09
SFO:		4.60E-02	Dermal:		Dermal:	
IUR:		4.10E-06	Inhalation:	1.86E+01	Inhalation:	2.25E-06
Mutagen:		Y	Total:	1.87E+01	Total:	2.26E-06
VOC:		Y				
% Contribution	n to Media R	Risk		99.86%		99.40%
Exceeds Ha	zard!					
Analyte:	Vinyl Chl	oride		_		
CAS:	75-01-4					
Concentration	μg/L :	7.53E-02	1	Calculated H	lazard/Risk	
RfDo:		3.00E-03	Non-Ca	incer Adult	, Ca	ancer
RfCi:		8.00E-02	Ingestion:	2.24E-06	Ingestion:	6.63E-11
SFO:		7.20E-01	Dermal:		Dermal:	
IUR:		4.40E-06	Inhalation:	5.90E-04	Inhalation:	2.85E-09
Mutagen:		Y	Total:	5.92E-04	Total:	2.91E-09
NOC		Y				
VUC:						0.420/
% Contribution	n to Media R	Risk		0.00%		0.13%

	-				
Concentration µg/L :	1.30E+01		Calcul	ated Hazard/Risk	
RfDo:	4.00E-01	Non-Ca	ncer Adult	Cancer	
RfCi:	4.00E-01	Ingestion:	2.90E-06	Ingestion:	
SFO:		Dermal:		Dermal:	
IUR:		Inhalation:	1.55E-02	Inhalation:	
Mutagen:		Total:	1.55E-02	Total: 0.	00E+00
VOC:	Y				
% Contribution to Media	Risk		0.08%	0.00%	0

Default Hazard Index

<u>Risk Based Performance Criteria</u> Default Risk Individual Chemical

1.00E-05

Default Cumulative Risk-All Chemicals 1.00E-05

Contact Depth to Groundwater: Direct Less than 15ft

Groundwater Total Calculated Hazard Index/Risk for Groundwater

Non-Cancer Adult

 Ingestion:
 1.69E-02

 Dermal:
 0.00E+00

 Inhalation:
 1.87E+01

 Total:
 1.87E+01

Can	Cancer						
Ingestion:	5.31E-09						
Dermal:	0.00E+00						
Inhalation:	2.26E-06						
Total:	2.27E-06						

Site Name:	Kirby - Ec	dy Constru	uction Excava	ation Inahalation			Construction
Program:	Voluntar	y Remedia	tion Program) ased Performance Criteria			
ח	efault Hazar	d Index	Default	Risk Individual Chemical	Default Cu	mulative Ri	sk-All Chemicals
	1	umuex	Derduit	1.00E-05	Delauted	1 00F-0	5
	-	Contact	Depth to Grou	undwater: Direct Less tha	an 15ft	1.002 0	
Δir							
	D						
Analyte:	Benzene						
CAS:	71-43-2		1				
Concentration	n μg/m3:	1.08E+04		Calculated	Hazard/Risk		
RfDo:			Non-Ca	ncer Adult		Ca	ncer
RfCi:		8.00E-02	Ingestion:		In	gestion:	
SFO:			Dermal:		De	ermal:	
IUR:		7.80E-06	Inhalation:	1.44E-01	In	halation:	1.23E-06
Mutagen:			Total:	1.44E-01	Тс	otal:	1.23E-06
VOC:		Y					
% Contributio	n to Media Ri	sk		0.01%		(0.55%
Analyte:	Bromodic	hlorometh	ane	~			
CAS:	75-27-4		-		•		
Concentration	n μg/m3:	6.00E+02		Calculated	Hazard/Risk		
RfDo:			Non-Ca	incer Adult		Ca	ncer
RfCi:		2.00E-02	Ingestion:	2	In	gestion:	
SFO:			Dermal:		De	ermal:	
IUR:		3.70E-05	Inhalation:	2.01E-02	In	halation:	2.04E-07
Mutagen:			Total:	2.01E-02	Тс	otal:	2.04E-07
VOC:		Y					
% Contributio	n to Media Ri	isk	-	0.00%		(0.09%

Analyte: Chloroform

-	
CAS:	67-66-3

Concentration µg/m3:	2.00E+03			Calculated Hazard/Risk		
RfDo:		Non-Ca	ncer Adult		Cancer	
RfCi:	2.44E-01	Ingestion:		Ingestior	1:	
SFO:		Dermal:		Dermal:		
IUR:	2.30E-05	Inhalation:	7.51E-03	Inhalatio	n: 5.78E	-07
Mutagen:		Total:	7.51E-03	Total:	5.78E	-07
VOC:	Y					
% Contribution to Media Risk		_	0.00%		0.26%	

Site Name:	Kirby - Ed	dy Constru	uction Excav	ation Inahalation			Construction
Program:	Voluntary	y Remedia [.]	tion Progran	n la f			
_	6 1		<u>Risk Ba</u>	ased Performance Cri	<u>teria</u>		
D	efault Hazar	d Index	Defaul	t Risk Individual Chem	nical Defaul	t Cumulative R	isk-All Chemicals
	1			1.00E-05		1.00E-0)5
		Contact	Depth to Gro	undwater: Direct Les	s than 15ft		
Air							
Analyte:	Ethylbenz	ene					
CAS:	100-41-4						
Concentration	μg/m3:	8.02E+03		Calcu	lated Hazard/Ris	k	
RfDo:			Non-Ca	ancer Adult		Ca	ancer
RfCi:		9.00E+00	Ingestion:			Ingestion:	
SFO:			Dermal:			Dermal:	
IUR:		2.50E-06	Inhalation:	7.27E-04		Inhalation:	2.24E-07
Mutagen:			Total:	7.27E-04		Total:	2.24E-07
VOC:		Y					
% Contributio	n to Media Ri	sk		0.00%			0.10%
Analyte:	Hexane, N	-			(
CAS:	110-54-3						
Concentration	μg/m3:	8.67E+04	1	Calcu	lated Hazard/Ris	k	
RfDo:			Non-Ca	ancer Adult		Ca	ancer
RfCi:		2.00E+00	Ingestion:	2		Ingestion:	
SFO:			Dermal:			Dermal:	
IUR:			Inhalation:	3.78E-02		Inhalation:	
Mutagen:			Total:	3.78E-02		Total:	0.00E+00
VOC:		Y					

% Contribution to Media Risk

Analyte: Naphthalene

CAS	91_20_3
CAS.	91-20-3

Concentration µg/m3:	4.48E+03			Calculated Hazard/Risk		
RfDo:		Non-Ca	ncer Adult		Can	cer
RfCi:	3.00E-03	Ingestion:		Ingestio	n:	
SFO:		Dermal:		Dermal:		
IUR:	3.40E-05	Inhalation:	1.08E+00	Inhalati	on:	1.50E-06
Mutagen:		Total:	1.08E+00	Total:		1.50E-06
VOC:	Y					
% Contribution to Media Risk		_	0.06%		0.0	67%

0.00%

Exceeds Hazard!

0.00%

	Voluntar	ry Remedia	tion Program	l Need Performance Criteria			
D	efault Haza	rd Index	Default	Risk Individual Chemical	Default Cum	nulative Ri	sk-All Chemicals
_	1			1.00E-05		1.00E-0	15
		Contact	Depth to Grou	undwater: Direct Less that	n 15ft		
Δir							
Analyta:	Totrachia	roothylong					
Allalyte.		noetnylene					
LAS:	127-10-4]				
Concentration	μg/m3:	4.60E+03		Calculated	Hazard/Risk		
RfDo:			Non-Ca	ncer Adult		Ca	incer
RfCi:		4.07E-02	Ingestion:		Ing	estion:	
SFO:			Dermal:		Der	rmal:	
IUR:		2.60E-07	Inhalation:	6.80E-02	Inh	alation:	9.86E-09
Mutagen:			Total:	6.80E-02	Tot	al:	9.86E-09
VOC:		Y					
% Contribution	n to Media R	Risk		0.00%			0.00%
Analyte:	Trichloro	ethylene					
CAS:	79-01-6	-					
Concontration	ug/m2:]				
RfDo.	μg/1113.	4.002700			Hazard/Risk		
RfCi.		2 15F-02	Non-Ca	ncer Adult	Ing	Ca	incer
SEO:		2.131-03	Dormal:		Ing	estion:	
		4 10E-06	Inhalation:	1.925,02	Dei	alation:	2 215 04
Mutagen:		4.10L-00 V	Total:	1.030+03	Tot	alation.	2.21E-04
		v	TOLAI.	1.032+03	100	.di.	2.212-04
% Contribution	n to Media R	lisk		99.92%			98.29%
Exceeds Ha	zard! Ex	xceeds Risk	!				
Analyte:	Vinyl Chlo	oride					
CAS:	75-01-4		-				
Concentration	μg/m3:	1.20E+03		Calculated	Hazard/Risk		
RfDo:			Non-Ca	ncer Adult	-	Ca	incer
RfCi:		8.00E-02	Ingestion:		Ing	estion:	
SFO:			Dermal:		Der	rmal:	
IUR:		4.40E-06	Inhalation:	1.92E-02	Inh	alation:	9.24E-08
Mutagen:		Y	Total:	1.92E-02	Tot	al:	9.24E-08
VOC:		Y					
% Contribution	n to Media R	lisk		0.00%			0.04%

Site Name Program:	: Kirby - Ec Voluntar	ldy Constru y Remedia	<u>a</u>		Construction		
	Default Hazar	rd Index	Default	Risk Individual Chemica	l Default Cu	mulative Risk-A	All Chemicals
	1			1.00E-05		1.00E-05	
		Contact	Depth to Grou	undwater: Direct Less th	an 15ft		
Air							
Analyte:	Xylenes						
CAS:	1330-20-7	,					
Concentratio	on μg/m3:	1.63E+04		Calculate	d Hazard/Risk		
RfDo:			Non-Ca	ncer Adult		Cance	r
RfCi:		4.00E-01	Ingestion:		In	gestion:	
SFO:			Dermal:		De	ermal:	
IUR:			Inhalation:	3.32E-02	In	halation:	
Mutagen:			Total:	3.32E-02	Тс	otal: C	0.00E+00
VOC:		Y					
% Contributi	ion to Media Ri	sk		0.00%		0.00	%
Total Ca Non-Can Ingestion: Dermal: Inhalation: Total:	Iculated cer Adult 0.00E+00 0.00E+00 1.83E+03 1.83E+03	Hazard I	ndex/Risk	c for Air		Can Ingestion: Dermal: Inhalation: Total:	cer 0.00E+00 0.00E+00 2.24E-04 2.24E-04

Default Hazard Index

Default Risk Individual Chemical

Default Cumulative Risk-All Chemicals 1.00E-05

Contact Depth to Groundwater: Direct Less than 15ft

Report Summary

Hazard/risk values of zero (0.00+00) are reflective of non-calculated values. Hazard/risk for zero value analytes must be evaluated outside of quantitative risk assessment.

Hazard/Risk Summary for Groundwater

Analyte	CAS	Hazard	Risk
Dichloroethane, 1,1-	75-34-3	2.10E-08	5.11E-09
Dichloroethane, 1,2-	107-06-2	3.68E-05	9.19E-10
Dichloroethylene, 1,1-	75-35-4	1.33E-04	0.00E+00
Dichloroethylene, cis-1,2-	156-59-2	2.81E-04	0.00E+00
Dichloroethylene, trans-1,2-	156-60-5	1.58E-03	0.00E+00
Methylnaphthalene, 1-	90-12-0	1.51E-08	4.19E-13
Tetrachloroethane, 1,1,1,2-	630-20-6	9.44E-08	3.63E-09
Tetrachloroethylene	127-18-4	7.92E-03	1.15E-09
Trichloroethane, 1,1,1-	71-55-6	4.47E-05	0.00E+00
Trichloroethylene	79-01-6	1.87E+01	2.26E-06
Vinyl Chloride	75-01-4	5.92E-04	2.91E-09
Xylenes	1330-20-7	1.55E-02	0.00E+00

Hazard/Risk Summary for Air

Analyte	CAS	Hazard	Risk
Benzene	71-43-2	1.44E-01	1.23E-06
Bromodichloromethane	75-27-4	2.01E-02	2.04E-07
Chloroform	67-66-3	7.51E-03	5.78E-07
Ethylbenzene	100-41-4	7.27E-04	2.24E-07
Hexane, N-	110-54-3	3.78E-02	0.00E+00
Naphthalene	91-20-3	1.08E+00	1.50E-06
Tetrachloroethylene	127-18-4	6.80E-02	9.86E-09
Trichloroethylene	79-01-6	1.83E+03	2.21E-04
Vinyl Chloride	75-01-4	1.92E-02	9.24E-08
Xylenes	1330-20-7	3.32E-02	0.00E+00

Total Hazard Index/Risk for All Media

Site Name: Program:		Construction		
De	efault Hazard Index	Default Risk Individual Chemical	Default Cumula	tive Risk-All Chemicals
1		1.00E-05	1.00E-05	
	Contact De	pth to Groundwater: Direct Less than	15ft	
Non-Cancer Adult			Cancer	
Ingestion	n: 1.69E-02		Ingestion:	5.31E-09
Dermal:	0.00E+00		Dermal:	0.00E+00
Inhalatio	n: 1.85E+03		Inhalation:	2.27E-04
Total:	1.85E+03		Total:	2.27E-04
Exceeds Hazard Index!			Exceeds Cu	mulative Risk!

Construction Exposure Default Values

Symbol	Description	Value	Units
A	Construction Worker Soil Inhalation Dispersion Constant - Philadelphia	14.0111	(unitless)
AFcw	Construction Worker Soil Adherence Factor	0.3	(mg/cm2)
As	Areal extent of the site or contamination	0.5	(acres)
ATcw	Construction Worker Averaging Time: 365 x LT	25550	(days)
ATcw	Construction Worker Averaging Time	365	(days/yr)
ATcw-a	Construction Worker Averaging Time: EWcw x7 x EDcw	350	(days)
В	Construction Worker Soil Inhalation Dispersion Constant - Philadelphia	19.6154	(unitless)
BWcw	Construction Worker Body Weight	80	(kg)
С	Construction Worker Soil Inhalation Dispersion Constant - Philadelphia	225.3397	(unitless)
DWcw	Construction Worker Days Worked	5	(days/week)
EDcw	Construction Worker Exposure Duration	1	(yrs)
EFcw	Construction Worker Exposure Frequency	250	(days/yrs)
EFcw-a	Construction Worker Air Exposure Frequency	250	(days/yr)
EFcw-s	Construction Worker Soil Exposure Frequency	250	(days/yr)
EFcw-vrp	Construction Worker Soil Exposure Frequency - VRP ONLY - Virginia DEQ	125	(days/yr)
ETcw	Construction Worker Exposure Time	8	(hrs/day)
ETcw-s	Construction Worker Soil Exposure Time	8	(hrs/day)
EWcw	Construction Worker Weeks Worked	50	(weeks/yr)
F(x)	Function Dependent on 0.886 × (Ut/Um)	0.194	(unitless)

	along a straight road segment bisecting a square site - Virginia DEQ calculated		kg/m)
SAcw	Construction Worker Surface Area	3527	(cm2/day)
Тс	Total time over which construction occurs: EDcw*EWcw*7days/wk*24hrs/day*3600s/hr	30240000	(s)
TR-ACH	Trench Air Changes per Hour - Virginia DEQ	2	(h)-1
TR-ACvad	Trench Advection Coefficient Groundwater greater than 15ft - Virginia DEQ	0.25	(cm3/cm3)
TR-CF1	Trench Conversion Factor-1	0.001	(L/cm3)
TR-CF2	Trench Conversion Factor-2	10000	(cm2/m2)
TR-CF3	Trench Conversion Factor-3	3600	(s/hr)
TR-CF4	Trench Conversion Factor-4	1000000	(cm3/m3)
TR-D-dir	Trench Depth - groundwater less Than 15ft - Virginia DEQ	2.44	(m)
TR-D-ind	Trench Depth - groundwater greater than 15ft - Virginia DEQ	4.57	(m)
TR-Dsg	Trench - Depth to soil gas vapor source - Virginia DEQ	1	(cm)
TR-EFcw	Trench Construction Worker Exposure Frequency - Virginia DEQ	125	(days/yr)
TR-ETcw	Trench Construction Worker Exposure Time - Virginia DEQ	4	(hrs/day)
TR-EVcw	Trench Construction Worker Events - Virginia DEQ	1	(events/day)
TR-F	Trench Fraction of floor through which contaminant can enter - Virginia DEQ	1	(unitless)
TR-HV	Trench Thickness of Vadose Zone - groundwater greater than 15 ft - Virginia DEQ	30	(cm)
TR-IRcw	Trench Construction Worker Groundwater Ingestion Rate - Virginia DEQ	0.02	(L/day)
TR-KGH2O	Trench Gas-phase mass transfer coefficient of water vapor at 25deg C - Virginia DEQ	0.833	(cm/s)
TR-KLO2	Trench Liquid-phase mass transfer coefficient of oxygen at 25deg C - Virginia DEQ	0.002	(cm/s)
TR-L	Trench Length - Virginia DEQ	2.44	(m)
TR-Lgw	Trench Depth to groundwater - Virginia DEQ	488	(cm)
L			

Site Name:Kirby - Eddy Construction Excavation InabalationProgram:Voluntary Remediation Program

Construction Worker Soil Ingestion Rate

Particulate Emission Factor Subchronic - Virginia DEQ calculated

Inverse of the ratio of the 1-h geometric mean concentration to the emission flux

Dispersion Correction Factor

Total soil porosity: 1-(pb/ps)

Risk Based Performance Criteria

Default Hazard Index 1 Default Risk Individual Chemical 1.00E-05

Contact Depth to Groundwater: Direct Less than 15ft

Default Cumulative Risk-All Chemicals 1.00E-05

0.433962264150943 (unitless)

1266503136.97919 (m3/kg)

87.3689772162309 (g/m2-s per

0.185 (unitless)

330 (mg/day)

Construction

Fd

IRcw

PEFsc

Q/C

Program:	Voluntary Remediation Program Risk Based Performance Criteria							
	Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risl	k-All Chemicals				
	1	1.00E-05	1.00E-05					
	Contact [Depth to Groundwater: Direct Less than 15	5ft					
TR-MWH2O	Trench Molecular Weigh	nt of Water - Virginia DEQ	18	(unitless)				
TR-MWO2	Trench Molecular Weigh	nt of Oxygen - Virginia DEQ	32	(unitless)				
TR-Porvad	Trench Porosity in Vado	se Zone - groundwater greater than 15ft - Virginia D	EQ 0.44	(cm3/cm3)				
TR-R	Trench Ideal Gas Consta	nt - Virginia DEQ	0.000082	(atm-m3/mol-K)				
TR-Temp-F	Trench Temperature Fal	nrenheit - Virginia DEQ	77	(F)				
TR-Temp-K	Trench Temperature - V	irginia DEQ	298	(К)				
TR-W	Trench Width - Virginia	DEQ	0.91	(m)				
TR-W/D	Trench Width to Depth	Ratio - Virginia DEQ	0.38	(unitless)				
Um	Mean Annual Wind Spee	ed	4.69	(m/s)				
Ut	Equivalent Threshold Va	lue of Wind Speed at 7m	11.32	(m/s)				
V	V Fraction of Vegetative	Cover	0.5	(unitless)				
Θa	Air filled soil porosity: n-	-Ow	0.133962264150943	(unitless)				
Θw	Water filled soil porosity		0.3	(unitless)				
ρb	Dry soil bulk density		1.5	(kg/L)				
ρs	Soil particle density	V	2.65	(kg/L)				

Site Name: Kirby - Eddy Construction Excavation Inabalation

END OF REPORT

Construction

Table 9A: Sub-Slab Vapor & Soil Gas Risk for Residential Land Use ActivitiesKriby and Eddy Parcels, Cleveland, Cuyahoga County, Ohio

		Applicable	Standards			
Chemical of Concern		VAP GDCS Indoor Air Residential Land Use ¹ , Non-Carcinogens	VAP GDCS Indoor Air Resiendential Land Use ² , Carcinogens	Exposure Point Concentration	Non-Cancer Hazard Quotient ³	Cancer Risk Ratio ³
Volatile Organic Compounds -	VOCs					
Acetone	ug/m3	1,066,667	NC	3,100	0.0029063	-
Benzene	ug/m3	1,033	120	10,800	10.4516129	90
Bromodichloromethane	ug/m3	NA	25.33333333	600	-	-
Carbon Disulfide	ug/m3	24,333	NC	5,300	0.2178082	-
Carbon Tetrachloride	ug/m3	3,333	156.6666667	1.7	0.0005100	0.0108511
Chloromethane	ug/m3	3,133	NC	1.09	0.0003479	-
1,1-Dichloroethane	ug/m3	NA	600	2.77	-	0.0046167
Cis-1,2-Dichloroethene	ug/m3	NA	NC	290,000	-	-
Trans-1,2-Dichloroethene	ug/m3	NA	NC	79,000	-	-
Ethanol	ug/m3	NSV/NIT	NSV/NIT	1,700	-	-
Ethyl Acetate	ug/m3	2,433	NC	1.56	0.0006411	-
Ethylbenzene	ug/m3	33,333	367	8,020	0.2406000	21.8727273
Trichlorofluoromethane	ug/m3	NA	NC	9.44	-	-
Dichlorodifluoromethane	ug/m3	NA	NC	9.35	-	-
N-Hexane	ug/m3	24,333 🧹	NC	86,700	3.5630137	-
Isopropylbenzene	ug/m3	14,000	NC	1,680	0.1200000	-
Methylene Chloride	ug/m3	21,000	33,333	170	0.0080952	0.0051000
2-Butanone (MEK)	ug/m3	173,333	NC	170	0.0009808	-
Naphthalene	ug/m3	103.3333333	27.67	4,480	43.3548387	161.928
Styrene	ug/m3	33,333	NA	4.72	0.0001416	-
Tetrachloroethene	ug/m3	1,400	3666.666667	13,200	9.4285714	3.6000000
Toluene	ug/m4	173,333	NC	3,500	0.0201923	
1,1,1-Trichloroethane	ug/m3	173,333	NC	500	0.0028846	-
Trichloroethene	ug/m3	67	160	4,800,000	72000.00	30000
Vinyl Chloride	ug/m3	3,333	56.66666667	1,200	0.3600000	21.1764706
Xylene	ug/m3	3,333	NC	11,940	3.5820000	-
1,2,4-Trimethylbenzene	ug/m3	2,100	NC	6,180	2.9428571	-
1,3,5-Trimethylbenzene	ug/m3	2,100	NC	56.4	0.0268571	-
Notes		Inhalatio	on Cumulative Risk I	Ratio	72074.32486	30298.59748

2. Ohio VAP GDCS Residential Land Use for Single Chemical Carcinogens with applied attenuation factor of 0.03.

3. Cumulative multiple chemical adjustment calculation.

Partners
P:\Project Files\2093 Cuyahoga County Department of Public Works\2093.10A Eddy-Kirby VAP PII PA\PRSA\Risk Tables

Table 9B: Sub-Slab Vapor and Soil Gas Risk for Commercial/Industrial Land Use Activities Kriby and Eddy Parcels, Cleveland, Cuyahoga County, Ohio

Chemical of Concern		Applicable Standards				
		VAP GDCS Indoor Air Commercial/Industria I Land Use ¹ , Non- Carcinogens VAP GDCS Indoor Air Commercial/Industria rial Land Use ² , Carcinogens		Exposure Point Concentration	Non-Cancer Hazard Quotient ³	Cancer Risk Ratio ³
Volatile Organic Compounds -	VOCs					
Acetone	ug/m3	4,666,667	NC	3,100	0.0006643	-
Benzene	ug/m3	4,333	533	10,800	2.4924994	20.2626642
Carbon Disulfide	ug/m3	103,333	NC	600	0.0058065	-
Carbon Tetrachloride	ug/m3	14,667	667	5,300	0.3613554	7.9460270
Chloroform	ug/m3	14,333	177	1.7	0.0001186	0.0096045
Chloromethane	ug/m3	13,000	NC	1.09	0.0000838	-
1,1-Dichloroethane	ug/m3	NA	2,567	2.77	-	0.0010791
Cis-1,2-Dichloroethene	ug/m3	NIT	NC	290,000	-	-
Trans-1,2-Dichloroethene	ug/m3	NA	NC	79,000	-	-
Ethanol	ug/m3	NSV/NIT	NSV/NIT	1,700	-	-
Ethyl Acetate	ug/m3	10,333	NC	1.56	0.0001510	-
Ethylbenzene	ug/m3	146,667	1,633	8,020	0.0546817	4.9112064
Trichlorofluoromethane	ug/m3	NA	NC	9.44	-	-
Dichlorodifluoromethane	ug/m3	NA	NC	9.35	-	-
N-Hexane	ug/m3	103,333 🧹	NC	86,700	0.8390350	-
Isopropylbenzene	ug/m3	60,000	NC	1,680	0.0280000	-
Methylene Chloride	ug/m3	86,666	400,000	170	0.0019616	0.0004250
2-Butanone (MEK)	ug/m3	733,333	NC	170	0.0002318	-
Naphthalene	ug/m3	433	120	4,480	10.3464203	37.333
Styrene	ug/m3	146,667	NC	4.72	0.0000322	-
Tetrachloroethene	ug/m3	6,000	15,667	13,200	2.2000000	0.8425353
Toluene	ug/m3	733,333	NC	3,500	0.0047727	-
1,1,1-Trichloroethane	ug/m3	733,333	NC	500	0.0006818	-
Trichloroethene	ug/m3	293	1,000	4,800,000	16382.25	4800
m&p-Xylene	ug/m3	14,667	NC	1,200	0.0818163	-
o-Xylene	ug/m3	14,667	NC	11,940	0.8140724	-
1,2,4-Trimethylbenzene	ug/m3	8,667	NC	6,180	0.7130495	-
1,3,5-Trimethylbenzene	ug/m3	8,667	NC	56.4	0.0065074	-
Notes		Inahaltio	on Cumulative Risk	Ratio	16400.20450	4871.30687
NC = Non Carcinogenic		1				

1. Ohio VAP GDCS Indoor Air Residential Land Use for Single Chemical Non-Carcinogens with applied attenuation factor of 0.03

2. Ohio VAP GDCS Indoor Air Residential Land Use for Single Chemical Carcinogens with applied attenuation factor of 0.03.

3. Cumulative multiple chemical adjustment calculation.

Partners P:\Project Files\2093 Cuyahoga County Department of Public Works\2093.10A Eddy-Kirby VAP PII PA\PRSA\Risk Tables

Table 10: Summary of Complete Exposure Pathways Eddy-Kirby Property, Parcels 4 & 5 Cleveland, Ohio

Affected Medium	COCs	Further Evaluation Required	Potential Receptor	Further Evaluation Conducted				
		SOILS						
Direct Contact	Detectable concentrations of PAHs, TPH, and Metals	Yes	Residential and Construction/Excavation Workers	PSRA				
	GRO	UNDWATER						
Potable	Concentrations of PAHs, VOCs, Metals above UPUS, VOCs above VISL	No	Class A in a USD	USD/Groundwater Use Restriction				
Vapor intrusion to Indoor Air from Soil Vapor	Detectable concentrations of VOCs above standards	Yes	Resdiential	PRSA				
Trench Related ExposuresDermal Contact	Groundwater <10 feet on Parcel 4	Yes	Class A in a USD	PRSA				
Trench Inhalation	Concentrations of COCs above UPUS and VISL	Yes	Construction/Excavation	PRSA				
SUB-SLAB VAPOR								
Vapor intrusion to Indoor Air	Concentrations of VOCs above standards	No	Residential and Construction/Excavation Workers	Remedy				
INDOOR AIR								
Vapor intrusion to Indoor Air	No concentrations of VOCs above standards	No	Residential	None				